【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了“你最喜愛的電視節(jié)目”的問卷調(diào)查(每人只填寫一項(xiàng)),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖所示),根據(jù)要求回答下列問題:
(1)本次問卷調(diào)查共調(diào)查了________名觀眾;圖②中最喜愛“體育節(jié)目”的扇形圓心角度數(shù)是________.
(2)補(bǔ)全圖①中的條形統(tǒng)計(jì)圖;
(3)現(xiàn)有最喜愛“新聞節(jié)目”(記為),“體育節(jié)目”(記為),“綜藝節(jié)目”(記為),“科普節(jié)目”(記為)的觀眾各一名,電視臺要從四人中隨機(jī)抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛“”和“”兩位觀眾的概率.
【答案】(1)200;126°;(2)見解析;(3)
【解析】
(1)用最喜愛“科普節(jié)目”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù),再算出最喜愛“體育節(jié)目”的人數(shù)及所占的百分比,然后用360度乘最喜愛“體育節(jié)目”的人數(shù)所占的百分比即可得到“體育節(jié)目”在扇形統(tǒng)計(jì)圖中所對應(yīng)的圓心角的度數(shù);
(2)由(1)求得的最喜愛“體育節(jié)目”的人數(shù)即可補(bǔ)全條形統(tǒng)計(jì)圖;
(3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽到最喜愛“B”和“C”兩位觀眾的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)本次問卷調(diào)查的總?cè)藬?shù)為:45÷22.5%=200(人),
∴最喜愛“體育節(jié)目”類節(jié)目的人數(shù)為200(50+35+45)=70(人),
則圖②中最喜愛“體育節(jié)目”的人數(shù)占調(diào)查總?cè)藬?shù)的百分比為70÷200×100%=35%,
∴“體育節(jié)目”在扇形統(tǒng)計(jì)圖中所對應(yīng)的圓心角的度數(shù)為,
故答案為:200;;
(2)由(1)得:最喜愛“體育節(jié)目”類節(jié)目的人數(shù)為70人,
補(bǔ)全圖①中的條形統(tǒng)計(jì)圖如圖①所示:
(3)根據(jù)題意可畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),恰好抽到最喜愛“B”和“C”兩位觀眾的結(jié)果數(shù)為2,
所以P(恰好抽到最喜愛“B”和“C”兩位觀眾)=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年5月3日,中國科學(xué)院在上海發(fā)布了中國首款人工智能芯片:寒武紀(jì)(MLU100),該芯片在平衡模式下的等效理論峰值速度達(dá)每秒128 000 000 000 000次定點(diǎn)運(yùn)算,將數(shù)
128 000 000 000 000用科學(xué)計(jì)數(shù)法表示為( )
A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
問題情境:(1)如圖1,四邊形中,,點(diǎn)為邊的中點(diǎn),連接并延長交的延長線于點(diǎn),求證:;(表示面積)
問題遷移:(2)如圖2:在已知銳角內(nèi)有一個定點(diǎn).過點(diǎn)任意作一條直線分別交射線于點(diǎn).小明將直線繞著點(diǎn)旋轉(zhuǎn)的過程中發(fā)現(xiàn),的面積存在最小值,請問當(dāng)直線在什么位置時,的面積最小,并說明理由.
實(shí)際應(yīng)用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門計(jì)劃以公路和經(jīng)過防疫站的一條直線為隔離線,建立個面積最小的三角形隔離區(qū),若測得試求的面積.(結(jié)果保留根號)(參考數(shù)據(jù):)
拓展延伸:(4)如圖4,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)分別為,過點(diǎn)的直線與四邊形一組對邊相交,將四邊形分成兩個四邊形,求其中以點(diǎn)為頂點(diǎn)的四邊形面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣6mx+9m+1(m≠0).
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)若拋物線與x軸的兩個交點(diǎn)分別為A和B點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=4,求m的值.
(3)已知四個點(diǎn)C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若拋物線與線段CD和線段EF都沒有公共點(diǎn),請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.
據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)
①cos(﹣60°)=﹣;
②sin75°=;
③sin2x=2sinxcosx;
④sin(x﹣y)=sinxcosy﹣cosxsiny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB繞著點(diǎn)A逆時針方向旋轉(zhuǎn)120°得到線段AC,點(diǎn)B對應(yīng)點(diǎn)C,在∠BAC的內(nèi)部有一點(diǎn)P,PA=8,PB=4,PC=4,則線段AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺按如圖①方式拼接:含30°角的三角尺的長直角邊與含45°角的三角尺的斜邊恰好重合(在Rt△ABC中,∠ACB=90°,∠BAC=30°;在Rt△ACD中,∠ADC=90°∠DAC=45°)已知AB=2,P是AC上的一個動點(diǎn).
(1)當(dāng)PD=BC時,求∠PDA的度數(shù);
(2)如圖②,若E是CD的中點(diǎn),求△DEP周長的最小值;
(3)如圖③,當(dāng)DP平分∠ADC時,在△ABC內(nèi)存在一點(diǎn)Q,使得∠DQC=∠DPC,且CQ=,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AD=BD,E為AB的中點(diǎn),F為CD上一點(diǎn),連接EF交BD于G.
(1)如圖1,若DF=DG=2,AB=8,求EF的長;
(2)如圖2,∠ADB=90°,點(diǎn)P為平行四邊形ABCD外部一點(diǎn),且AP=AD,連接BP、DP、EP,DP交EF于點(diǎn)Q,若BP⊥DP,EF⊥EP,求證:DQ=PQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com