【題目】24.在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線(xiàn)BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線(xiàn)BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)2.
【解析】試題分析:(1)證△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根據(jù)平行四邊形判定推出即可;
(2)求出∠ABE=30°,根據(jù)直角三角形性質(zhì)求出AE、BE,即可求出答案.
試題解析:(1)∵四邊形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∵在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線(xiàn)BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線(xiàn)BD上的點(diǎn)N處,
∴∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,
∴∠ABE=∠CDF,
在△ABE和△CDF中
,
∴△ABE≌△CDF(ASA),
∴AE=CF,
∵四邊形ABCD是矩形,
∴AD=BC,AD∥BC,
∴DE=BF,DE∥BF,
∴四邊形BFDE為平行四邊形;
(2)∵四邊形BFDE為菱形,
∴BE=ED,∠EBD=∠FBD=∠ABE,
∵四邊形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴∠ABE=30°,
∵∠A=90°,AB=2,
∴AE=,BE=2AE=,
∴BC=AD=AE+ED=AE+BE=+=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫(xiě)出點(diǎn)A、B的坐標(biāo);
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,寫(xiě)出A′B′C′的三個(gè)頂點(diǎn)坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)D、E分別在邊AB、AC的中點(diǎn),將△ADE沿過(guò)DE折疊,使點(diǎn)A落在BC上F處,若∠B=50°,則∠BDF=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)F為AB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)E在BC上,BE=BF,連接AE,EF和CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知CO1是△ABC的中線(xiàn),過(guò)點(diǎn)O1作O1E1∥AC交BC于點(diǎn)E1,連接AE1交CO1于點(diǎn)O2;過(guò)點(diǎn)O2作O2E2∥AC交BC于點(diǎn)E2,連接AE2交CO1于點(diǎn)O3;過(guò)點(diǎn)O3作O3E3∥AC交BC于點(diǎn)E3,…,如此繼續(xù),可以依次得到點(diǎn)O4,O5,…,On和點(diǎn)E4,E5,…,En,則O2016E2016=_____AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)、兩點(diǎn),與x軸交于另一點(diǎn)C,頂點(diǎn)為D.
求該拋物線(xiàn)的解析式及點(diǎn)C、D的坐標(biāo);
經(jīng)過(guò)點(diǎn)B、D兩點(diǎn)的直線(xiàn)與x軸交于點(diǎn)E,若點(diǎn)F是拋物線(xiàn)上一點(diǎn),以A、B、E、F為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)F的坐標(biāo);
如圖是拋物線(xiàn)上的點(diǎn),Q是直線(xiàn)AP上方的拋物線(xiàn)上一動(dòng)點(diǎn),求的最大面積和此時(shí)Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱(chēng)“玉米樓”)坐落在風(fēng)景如畫(huà)的如意湖畔,是來(lái)鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識(shí)后,劉明和王華決定用自己學(xué)到的知識(shí)測(cè)量“玉米樓”的高度.如圖,劉明在點(diǎn)C處測(cè)得樓頂B的仰角為45°,王華在高臺(tái)上的D處測(cè)得樓頂?shù)难鼋菫?/span>40°.若高臺(tái)DE的高為5米,點(diǎn)D到點(diǎn)C的水平距離EC為47.4米,A,C,E三點(diǎn)共線(xiàn),求“玉米樓”AB的高度.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4, PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù)______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com