分析 (1)由旋轉(zhuǎn)得到△A′BC,有△A′BA是等邊三角形,當(dāng)點(diǎn)A′A、C三點(diǎn)共線時(shí),A′C=AA′+AC,最大即可;
(2)由旋轉(zhuǎn)得到結(jié)論P(yáng)A+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四點(diǎn)共線時(shí),(P1A+P1B+PC)最短,即線段A1C最短,根據(jù)勾股定理,即可.
解答 解:(1)∵△ABP逆時(shí)針旋轉(zhuǎn)60°得到△A′BC,
∴∠A′BA=60°,A′B=AB,AP=A′C
∴△A′BA是等邊三角形,
∴A′A=AB=BA′=2,
在△AA′C中,A′C<AA′+AC,即AP<6,
則當(dāng)點(diǎn)A′A、C三點(diǎn)共線時(shí),A′C=AA′+AC,
即AP=6,
即AP的最大值是:6;
故答案是:6.
(2)①旋轉(zhuǎn)后的圖形如圖1;
②如圖2,
∵Rt△ABC是等腰三角形,∴AB=BC.
以B為中心,將△APB逆時(shí)針旋轉(zhuǎn)60°得到△A1P1B.則A1B=AB=BC=4,PA=P1A1,PB=P1B,
∴PA+PB+PC=P1A1+P1B+PC.
∵當(dāng)A1、P1、P、C四點(diǎn)共線時(shí),(P1A+P1B+PC)最短,即線段A1C最短,
∴A1C=PA+PB+PC,
∴A1C長度即為所求.
過A1作A1D⊥CB延長線于D.
∵∠A1BA=60°(由旋轉(zhuǎn)可知),
∴∠A1BD=30°.
∵A1B=4,
∴A1D=2,BD=2√3
∴CD=4+2√3;
在Rt△A1DC中,A1C=√A1D2+DC2=√22+(4+2√3)2=2√2+2√6.
點(diǎn)評(píng) 此題是幾何變換綜合題,主要考查了圖形的旋轉(zhuǎn)的性質(zhì),畫出圖形是解本題的關(guān)鍵,也是難點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+xy+1=x(x+y)+1 | B. | a2-b2=(a+b)(a-b) | ||
C. | x2-4xy+4y2=(x-2y)2 | D. | ma+mb+mc=m(a+b+c) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ?ABCD是中心對(duì)稱圖形 | B. | △AOB與△BOC的面積相等 | ||
C. | △AOB≌△COD | D. | △AOB≌△BOC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com