【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.
【答案】
(1)FG=CE;FG∥CE
(2)
證明:過(guò)點(diǎn)G作GH⊥CB的延長(zhǎng)線于點(diǎn)H,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE與△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四邊形GHBF是矩形,
∴GF=BH,F(xiàn)G∥CH
∴FG∥CE
∵四邊形ABCD是正方形,
∴CD=BC,
∴HE=BC
∴HE+EB=BC+EB
∴BH=EC
∴FG=EC
(3)
證明:
∵四邊形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF與△DCE中,
,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,
∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四邊形CEGF平行四邊形,
∴FG∥CE,F(xiàn)G=CE.
【解析】解:(1)FG=CE,F(xiàn)G∥CE;
(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,F(xiàn)G∥CE;(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對(duì)應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,F(xiàn)G∥CE;(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.本題三角形與四邊形綜合問(wèn)題,涉及全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì).解題的關(guān)鍵是利用全等三角形的對(duì)應(yīng)邊相等進(jìn)行線段的等量代換,從而求證出平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過(guò)B、C兩點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB是小圓的切線,點(diǎn)P為切點(diǎn),AB=12 ,OP=6,則劣弧AB的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點(diǎn)B、C、G在同一條直線上,M是線段AE的中點(diǎn),DM的延長(zhǎng)線交EF于點(diǎn)N,連接FM,易證:DM=FM,DM⊥FM(無(wú)需寫(xiě)證明過(guò)程)
(1)如圖2,當(dāng)點(diǎn)B、C、F在同一條直線上,DM的延長(zhǎng)線交EG于點(diǎn)N,其余條件不變,試探究線段DM與FM有怎樣的關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明;
(2)
如圖3,當(dāng)點(diǎn)E、B、C在同一條直線上,DM的延長(zhǎng)線交CE的延長(zhǎng)線于點(diǎn)N,其余條件不變,探究線段DM與FM有怎樣的關(guān)系?請(qǐng)直接寫(xiě)出猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ADE和DCF,連接AF,BE
(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是 , 位置關(guān)系是 .
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予說(shuō)明
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫(xiě)出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全教育,某校組織了“防溺水”知識(shí)競(jìng)賽,對(duì)表現(xiàn)優(yōu)異的班級(jí)進(jìn)行獎(jiǎng)勵(lì),學(xué)校購(gòu)買了若干副乒乓球拍和羽毛球拍,購(gòu)買2副乒乓球拍和1副羽毛球拍共需116元;購(gòu)買3幅乒乓球拍和2幅羽毛球拍共需204元.
(1)求購(gòu)買1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若學(xué)校購(gòu)買乒乓球拍和羽毛球拍共30幅,且支出不超過(guò)1480元,則最多能夠購(gòu)買多少副羽毛球拍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時(shí),求線段DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)某校組織學(xué)生參加“周末郊游”.甲旅行社說(shuō):“只要一名學(xué)生買全票,則其余學(xué)生可享受半價(jià)優(yōu)惠.”乙旅行社說(shuō):“全體學(xué)生都可按6折優(yōu)惠”.已知全票價(jià)為240元.
(1)設(shè)學(xué)生人數(shù)為x,甲旅行社收費(fèi)為y甲(元),乙旅行社收費(fèi)為y乙(元),用含x的式子表示出y甲與y乙;
(2)就學(xué)生人數(shù)x討論哪一家旅行社更優(yōu)惠.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com