【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時,求線段DH的長.

【答案】
(1)

解:BD=CF.

理由如下:由題意得,∠CAF=∠BAD=θ,

在△CAF和△BAD中,

,

∴△CAF≌△BAD,

∴BD=CF;


(2)

解:①由(1)得△CAF≌△BAD,

∴∠CFA=∠BDA,

∵∠FNH=∠DNA,∠DNA+∠NAD=90°,

∴∠CFA+∠FNH=90°,

∴∠FHN=90°,即BD⊥CF;

②連接DF,延長AB交DF于M,

∵四邊形ADEF是正方形,AD=3 ,AB=2,

∴AM=DM=3,BM=AM﹣AB=1,

DB= = ,

∵∠MAD=∠MDA=45°,

∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,

∴△DMB∽△DHF,

,即 = ,

解得,DH=


【解析】本題考查的是正方形的性質(zhì)、等腰直角三角形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及相似三角形的判定和性質(zhì),掌握旋轉(zhuǎn)角的定義和旋轉(zhuǎn)變換的性質(zhì)、正確作出輔助性是解題的關(guān)鍵.(1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)和全等三角形的判定定理證明△CAF≌△BAD,證明結(jié)論;(2)①根據(jù)全等三角形的性質(zhì)、垂直的定義證明即可;②連接DF,延長AB交DF于M,根據(jù)題意和等腰直角三角形的性質(zhì)求出DM、BM的長,根據(jù)勾股定理求出BD的長,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別作其內(nèi)角∠ACB與外角∠DAC的角平分線,且兩條角平分線所在的直線交于點E

(1)填空:①如圖1,若∠B=60°,則∠E=   

②如圖2,若∠B=90°,則∠E=   ;

(2)如圖3,若∠B=α,求∠E的度數(shù);

(3)如圖4,仿照(2)中的方法,在(2)的條件下分別作∠EAB與∠ECB的角平分線,且兩條角平分線交于點G,求∠G的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了比較市場上甲、乙兩種電子鐘每日走時誤差的情況,從這兩種電子鐘中,各隨機抽取10臺進行測試,兩種電子鐘走時誤差的數(shù)據(jù)如下表(單位:秒):

編號

類型

甲種電子鐘

1

-3

-4

4

2

-2

2

-1

-1

2

乙種電子鐘

4

-3

-1

2

-2

1

-2

2

-2

1

(1) 計算甲、乙兩種電子鐘走時誤差的平均數(shù);

(2) 計算甲、乙兩種電子鐘走時誤差的方差;

(3) 根據(jù)經(jīng)驗,走時穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類型的電子鐘價格相同,請問:你買哪種電子鐘?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題引入:

(1)如圖①,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC=(用α表示);如圖②,∠CBO= ∠ABC,∠BCO= ∠ACB,∠A=α,則∠BOC=(用α表示)拓展研究:
(2)如圖③,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=(用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABC中,AB=AC,點D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過點A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.

(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個)
參考小明思考問題的方法,解答下列問題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點,E為DC的中點,點F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點D、E分別在AB、AC邊上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,AD=6,點M為AB上的一動點,將矩形ABCD沿某一直線對折,使點C與點M重合,該直線與AB(或BC)、CD(或DA)分別交于點P、Q

(1)用直尺和圓規(guī)在圖甲中畫出折痕所在直線(不要求寫畫法,但要求保留作圖痕跡)
(2)如果PQ與AB、CD都相交,試判斷△MPQ的形狀并證明你的結(jié)論;
(3)設(shè)AM=x,d為點M到直線PQ的距離,y=d2
①求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
②當(dāng)直線PQ恰好通過點D時,求點M到直線PQ的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1件A型服裝計酬16元,加工1件B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時,加工3件A型服裝和1件B型服裝需7小時.(工人月工資=底薪+計件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時?
(2)一段時間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

同步練習(xí)冊答案