【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE, 交 AC于點F.
(1)如圖①,當時,求的值;
(2)如圖②當DE平分∠CDB時,求證:AF=OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.
【答案】(1);(2)(3)見解析
【解析】試題分析:(1)利用相似三角形的性質求得與的比值,依據和同高,則面積的比就是與的比值,據此即可求解;
(2)利用三角形的外角和定理證得 可以證得,在直角中,利用勾股定理可以證得;
(3)連接 易證是的中位線,然后根據是等腰直角三角形,易證 利用相似三角形的對應邊的比相等即可.
試題解析:(1)∵,∴
∵四邊形ABCD是正方形,
∴△CEF∽△ADF,∴,∴,∴;
(2)證明:∵DE平分∠CDB,
∴∠ODF=∠CDF,
∵AC、BD是正方形ABCD的對角線。
而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,
∴∠ADF=∠AFD,
∴AD=AF,
在中,根據勾股定理得:
AD==OA,
(3)證明:連接OE.
∵點O是正方形ABCD的對角線AC、BD的交點,
點O是BD的中點。
又∵點E是BC的中點,
∴OE是△BCD的中位線,
∴=,∴.
.在 中,∵∠GCF=45°.∴CG=GF,
又∵CD=BC,∴,
∴=.
∴CG=BG.
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2,即通過觀察函數的圖象,可以得到不等式ax+b>的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據學習以上知識的經驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進行轉化:
當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1>;
當x<0時,原不等式可以轉化為x2+4x﹣1<;
(2)構造函數,畫出圖象
設y3=x2+4x﹣1,y4=,在同一坐標系中分別畫出這兩個函數的圖象.
雙曲線y4=如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數圖象公共點的橫坐標
觀察所畫兩個函數的圖象,猜想并通過代入函數解析式驗證可知:滿足y3=y4的所有x的值為 ;
(4)借助圖象,寫出解集
結合(1)的討論結果,觀察兩個函數的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了改善辦學條件,計劃購置一批電子白板和一批筆記本電腦,經投標,購買1塊電子白板比買3臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買1塊電子白板和一臺筆記本電腦各需多少元?
(2)根據該校實際情況,需購買電子白板和筆記本電腦的總數為396,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數不超過購買電子白板數量的3倍,該校有哪幾種購買方案?
(3)上面的哪種購買方案最省錢?按最省錢方案購買需要多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下面的推理過程補充完整,并在括號內填上理由.
已知:B、C、E三點在一條直線上,∠3=∠E,∠4+∠2=180°.
試說明:∠BCF=∠E+∠F
解:∵∠3=∠E(已知)
∴EF∥ (內錯角相等,兩直線平行)
∵∠4+∠2=180°(已知)
∴CD∥
∴CD∥ (平行于同一條直線的兩條直線互相平行)
∴∠1=∠F,
∠2=
∵∠BCF=∠1+∠2(已知)
∴∠BCF=∠E+∠F(等量代換)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于點D,DE⊥AB于點E,則以下結論:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周長是4cm.其中正確的有( 。
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了增強學生的安全意識,某校組織了一次全校1500名學生都參加的“安全知識”考試,考題共10題.考試結束后,學校隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據統(tǒng)計圖提供的信息解答以下問題:
(1)本次抽查的樣本容量是 ;在扇形統(tǒng)計圖中,m= ,n= ,“答對10題”所對應扇形的圓心角為 度;
(2)將條形統(tǒng)計圖補充完整;
(3)請根據以上調查結果,估算出該校答對超過7題的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC.若AC=8,則四邊形ABCD的面積為( 。
A.32B.24C.40D.36
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了“迎國慶,向祖國母親獻禮”,某建筑公司承建了修筑一段公路的任務,指派甲、乙兩隊合作,18天可以完成,共需施工費126000元;如果甲、乙兩隊單獨完成此項工程,乙隊所用時間是甲隊的1.5倍,乙隊每天的施工費比甲隊每天的施工費少1000元.
(1)甲、乙兩隊單獨完成此項工程,各需多少天?
(2)為了盡快完成這項工程任務,甲、乙兩隊通過技術革新提高了速度,同時,甲隊每天的施工費提高了,乙隊每天的施工費提高了,已知兩隊合作12天后,由甲隊再單獨做2天就完成了這項工程任務,且所需施工費比計劃少了21200元.
①分別求出甲、乙兩隊技術革新前每天的施工費用;
②求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com