【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①abc>0;②a﹣b+c<0;③b+2c>0; ④a﹣2b+4c>0;⑤2a=3b
你認為其中正確信息的個數(shù)有(

A.2個
B.3個
C.4個
D.5個

【答案】C
【解析】解:
∵拋物線開口向下,與y軸的交點位于x軸的上方,
∴a<0,c>0,
∵對稱軸為x=﹣ =﹣ ,
∴2a=3b<0,
∴abc>0,故①⑤正確;
∵當x=﹣1時,y>0,當x=﹣ 時,y>0
∴a﹣b+c>0,故②不正確;
a﹣ b+c>0,即a﹣2b+4c>0,故④正確;
∵a﹣b+c>0,2a=3b,
b﹣b+c>0,即b+2c>0,故③正確;
綜上可知正確的有①③④⑤共4個,
故選C.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解,完成下列各題

定義:已知A、B、C 為數(shù)軸上任意三點,若點C A 的距離是它到點B 的距離的2 倍,則稱點C [A,B]2 倍點.例如:如圖1,點C [A,B]2 倍點,點D 不是[A,B]2 倍點,但點D [B,A]2 倍點,根據(jù)這個定義解決下面問題:

(1)在圖1 中,點A    2倍點,點B   2 倍點;(選用A、B、C、D 表示,不能添加其他字母);

(2)如圖2,M、N 為數(shù)軸上兩點,點M 表示的數(shù)是﹣2,點N 表示的數(shù)是4,若點E[M,N]2倍點,則點E 表示的數(shù)是   ;

(3)若P、Q 為數(shù)軸上兩點,點P在點Q的左側(cè),且PQ=m,一動點H從點Q 出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左運動,設(shè)運動時間為t 秒,求當t 為何值時,點H 恰好是PQ兩點的2倍點?(用含m 的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙C與y軸相切,且C點坐標為(2,0),直線l過點A(﹣2,0),與⊙C相切于點D,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列等式成立的是( )

A. 6÷(3×2)=6÷3×2 B. 3÷(-2)=3÷-2

C. (-12÷3)×5=-12÷3×5 D. 5-3×(-4)=2×(-4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某巡警騎摩托車在一條南北大道上來回巡邏,一天早晨,他從崗?fù)こ霭l(fā),中午停留在處,規(guī)定向北方向為正,當天上午連續(xù)行駛情況記錄如下(單位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.

1處在崗?fù)ず畏?距離崗?fù)ざ噙h?

(2)若摩托車每行駛1千米耗油升,這一天上午共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α( 0°<α<180°);當旋轉(zhuǎn)后的圓與矩形ABCD的邊相切時,α=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC⊥AB于點B,連接OC交⊙O于點E,弦AD∥OC,弦DF⊥AB于點G.

(1)求證:點E是 的中點;
(2)求證:CD是⊙O的切線;
(3)若AD=12,⊙O的半徑為10,求弦DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個暗箱中裝有紅、黃、白三種顏色的乒乓球(除顏色外其余均相同).其中白球、黃球各1個,若從中任意摸出一個球是白球的概率是
(1)求暗箱中紅球的個數(shù).
(2)先從暗箱中任意摸出一個球記下顏色后放回,再從暗箱中任意摸出一個球,求兩次摸到的球顏色不同的概率(用樹形圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù) )與反比例函數(shù) )的圖象交于點 ,

(1)求這兩個函數(shù)的表達式;
(2)在 軸上是否存在點 ,使 為等腰三角形?若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案