【題目】如圖,在矩形中,,,點為的中點,動點從點出發(fā)沿的方向在和上運動,將矩形沿折疊,點落在點處,當點恰好落在矩形的對角線上時(不與矩形頂點重合),點運動的距離為__________.
【答案】1或
【解析】
分點D′落在對角線AC上和點D′落在對角線BD上兩種情況分別進行討論求解即可得出點F運動的距離.
解:第一種情況,如圖當點D′落在對角線AC上時,連接DD′,
∵將矩形沿EF折疊,點D的對應(yīng)點為點D′,且點D'恰好落在矩形的對角線上,
∴DD′⊥EF,
∵點E為線段AD的中點,
∴AE=ED=ED′,
∴∠AD′D=90°,即DD′⊥AC,
∴EF∥AC,
∴點F是CD的中點,
∵在矩形ABCD中,AB=2,
∴CD=AB=2,
∴DF=1,
∴點F運動的距離為1.
第二種情況,如圖當點D′落在對角線BD上時,作FH⊥AD于H,
在矩形ABCD中,AB=2,,∠C=∠ADC=90°,
∴∠ADB=30°,
∵EF⊥BD,
∴∠FEH=60°,
∵四邊形CFHD為矩形,
∴HF=CD=2,
∴,
∵,
∴,
∴點F運動的距離為.
故答案為:1或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,的邊在軸的正半軸上,,反比例函數(shù)()的圖象經(jīng)過點.
(1)求反比例函數(shù)的關(guān)系式和點的坐標,
(2)過的中點作軸交反比例函數(shù)圖象于點,連接.求△的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若點(-2,y1)和(-,y2)在該圖象上,則y1>y2. 其中正確的結(jié)論個數(shù)是 ( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】世界衛(wèi)生組織通報說,沙特阿拉伯報告新增5例中東呼吸系統(tǒng)綜合征冠狀病毒(新型冠狀病毒)確診病例.全球新型冠狀病毒確診病例已達176例,其中死亡74例.冠狀病毒顆粒的直徑60-200nm,平均直徑為100nm,新型冠狀病毒直徑為178nm,呈球形或橢圓形,具有多形性.如果1nm=10-9米,那么新型冠狀病毒的半徑約為( )米
A.1.00×10-7B.1.78×10-7C.8.90×10-8D.5.00×10-8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.
(1)求拋物線的解析式;
(2)當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:在教學課上,老師提出如下問題:尺規(guī)作圖:作一條線段的垂直平分線.
已知:線段AB.
求作:線段AB的垂直平分線.
小蕓的作法如下:如圖, (1)分別以點A和點B為圓心,大于的長為半徑作弧,兩孤相交于C,D兩點; (2)作直線CD.所以直線CD就是所求作的垂直平分線.
老師說:“小蕓的作法正確.”
請回答:小蕓的作圖依據(jù)是____________________,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年全國兩會于3月5日在人民大會堂開幕,某社區(qū)為了解居民對此次兩會的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機抽取部分居民進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對兩會的關(guān)注程度分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下不完整的統(tǒng)計圖:
請結(jié)合圖表中的信息,解答下列問題:
(1)此次調(diào)查一共隨機抽取了_____名居民;
(2)請將條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中,“很強”所對應(yīng)扇形圓心角的度數(shù)為_____;
(4)若該社區(qū)有1500人,則可以估計該社區(qū)居民對兩會的關(guān)注程度為“淡薄”層次的約有 _____人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點,D是BC延長線上一點,過點D的直線交AC于E點,且△AEF為等邊三角形.
(1)求證:△DFB是等腰三角形;
(2)若DA=AF,求證:CF⊥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正確的結(jié)論是( )
A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com