【題目】某品牌筆記本電腦的售價(jià)是5000元/臺(tái)。最近,該商家對(duì)此型號(hào)筆記本電腦舉行促銷活動(dòng),有兩種優(yōu)惠方案。方案一:每臺(tái)按售價(jià)的九折銷售,方案二:若購(gòu)買不超過5臺(tái),每臺(tái)按售價(jià)銷售;若超過5臺(tái),超過的部分每臺(tái)按售價(jià)的八折銷售。設(shè)公司一次性購(gòu)買此型號(hào)筆記本電腦x合、

I)根據(jù)題意,填寫下表:

II)設(shè)選擇方案一的費(fèi)用為y1元,選擇方案二的費(fèi)用為為y2元,分別寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;

III)當(dāng)x>15時(shí),該公司采用哪種方案購(gòu)買更合算?并說明理由

【答案】14500085000,

2y1=4500x(x≥0),當(dāng)0x5時(shí),y2=5000x,當(dāng)x5時(shí),y2=5000+4000x;(3)方案二購(gòu)買更合算

【解析】

1)(2)根據(jù)題意可寫出方案一的費(fèi)用y1,方案二的費(fèi)用y2的函數(shù)關(guān)系式,即可進(jìn)行求解;(3)令y= y1- y2,根據(jù)新的函數(shù)關(guān)系式來判斷選擇哪個(gè)方案合算.

1)用方案二購(gòu)買10臺(tái)時(shí),費(fèi)用為5×5000+10-5)×5000×80%=45000,

用方案二購(gòu)買20臺(tái)時(shí),費(fèi)用為5×5000+20-5)×5000×80%=85000,

2)依題意得y1=5000×90%x=4500x(x≥0)

當(dāng)0x5時(shí),y2=5000x,

當(dāng)x5時(shí),y2=5000×5+0.8x-5)×5000=5000+4000x;

3)令y= y1- y2=4500x-5000-4000x=500x-5000,

當(dāng)x=15時(shí),y0,∴yx的增大而增大,

∴當(dāng)x15時(shí),y0,

y1 y2

∴方案二購(gòu)買更合算

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)操作發(fā)現(xiàn):如圖①,小明畫了一個(gè)等腰三角形ABC,其中AB=AC,在ABC的外側(cè)分別以AB,AC為腰作了兩個(gè)等腰直角三角形ABD,ACE,分別取BD,CE,BC的中點(diǎn)M,N,G,連接GM,GN.小明發(fā)現(xiàn)了:線段GMGN的數(shù)量關(guān)系是__________;位置關(guān)系是__________

(2)類比思考:

如圖②,小明在此基礎(chǔ)上進(jìn)行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中ABAC,其它條件不變,小明發(fā)現(xiàn)的上述結(jié)論還成立嗎?請(qǐng)說明理由.

(3)深入研究:

如圖③,小明在(2)的基礎(chǔ)上,又作了進(jìn)一步的探究.向ABC的內(nèi)側(cè)分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷GMN的形狀,并給與證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,以RtABCAC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,作OFABBC于點(diǎn)F,連接EF

1)求證:OFCE

2)求證:EF是⊙O的切線;

3)若⊙O的半徑為3,∠EAC60°,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,回答下列問題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)   

(3)請(qǐng)估計(jì)全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上。

IAB的長(zhǎng)度等于     

II)請(qǐng)你在圖中找到一個(gè)點(diǎn)P,使得AB是∠PAC的角平分線請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)P,并簡(jiǎn)要說明點(diǎn)P的位置是如何找到的(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,4AB=5ACAD△ABC的角平分線,點(diǎn)EBC的延長(zhǎng)線上,EF⊥AD于點(diǎn)F,點(diǎn)GAF上,FG=FD,連接EGAC于點(diǎn)H.若點(diǎn)HAC的中點(diǎn),則的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的袋子中裝有4個(gè)相同的小球,它們除顏色外無其它差別,把它們分別標(biāo)號(hào):1、2、3、4

(1)隨機(jī)摸出一個(gè)小球后,放回并搖勻,再隨機(jī)摸出一個(gè),用列表或畫樹狀圖的方法求出“兩次取的球標(biāo)號(hào)相同”的概率

(2)隨機(jī)摸出兩個(gè)小球,直接寫出“兩次取出的球標(biāo)號(hào)和等于4”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點(diǎn)為EEFx軸于F點(diǎn),Mm,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說明理由.

3)如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線ykx+2k0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過點(diǎn)Px軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請(qǐng)說明直線QH過定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張矩形紙片ABCD,,

如圖1,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為點(diǎn)M,N分別在邊ADBC,利用直尺和圓規(guī)畫出折痕不寫作法,保留作圖痕跡

如圖2,點(diǎn)K在這張矩形紙片的邊AD上,,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點(diǎn)AB分別落在點(diǎn)處,小明認(rèn)為所在直線恰好經(jīng)過點(diǎn)D,他的判斷是否正確,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案