【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長(zhǎng)為10,AB=7,則△ABC的周長(zhǎng)為 .
【答案】17
【解析】
試題分析:首先根據(jù)題意可得MN是AB的垂直平分線,由線段垂直平分線的性質(zhì)可得AD=BD,再根據(jù)△ADC的周長(zhǎng)為10可得AC+BC=10,又由條件AB=7可得△ABC的周長(zhǎng).
解:∵在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.
∴MN是AB的垂直平分線,
∴AD=BD,
∵△ADC的周長(zhǎng)為10,
∴AC+AD+CD=AC+BD+CD=AC+BC=10,
∵AB=7,
∴△ABC的周長(zhǎng)為:AC+BC+AB=10+7=17.
故答案為17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是__.
(2)連接NB,若AB=8cm,△NBC的周長(zhǎng)是14cm.
①求BC的長(zhǎng);
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長(zhǎng)值最。咳舸嬖,標(biāo)出點(diǎn)P的位置并求△PBC的周長(zhǎng)最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)直角三角形,滿足斜邊和一條直角邊相等,那么這兩個(gè)直角三角形________(填“是”或“不是”)全等三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F,交AD于點(diǎn)E.
(1)求證:AG=CG.
(2)求證:AG2=GEGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將b3﹣4b分解因式,所得結(jié)果正確的是( 。
A.b(b2﹣4)B.b(b﹣4)2
C.b(b﹣2)2D.b(b+2)(b﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在不等邊△ABC中,PM⊥AB于點(diǎn)M,PN⊥AC于點(diǎn)N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面積是6,下列結(jié)論:①AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周長(zhǎng)是7,其中正確的有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=AC,∠C=90°,直角頂點(diǎn)C在x軸上,一銳角頂點(diǎn)B在y軸上.
(1)如圖①若AD于垂直x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(﹣1,0),點(diǎn)A的坐標(biāo)是(﹣3,1),求點(diǎn)B的坐標(biāo).
(2)如圖②,直角邊BC在兩坐標(biāo)軸上滑動(dòng),若y軸恰好平分∠ABC,AC與y軸交于點(diǎn)D,過點(diǎn)A作AE⊥y軸于E,請(qǐng)猜想BD與AE有怎樣的數(shù)量關(guān)系,并證明你的猜想.
(3)如圖③,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過程中,請(qǐng)猜想OC,AF,OB之間有怎樣的關(guān)系(直接寫出結(jié)論,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知任意三角形的三邊長(zhǎng),如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個(gè)問題,在他的著作《度量論》一書中給出了計(jì)算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長(zhǎng),p=,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5
∴p==6
∴S===6
事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com