【題目】已知:點 A(4,0),點 B 是 y 軸正半軸上一點,如圖 1,以 AB 為直角邊作等腰直角三角形 ABC ABC 90.
(1)若 AC 6,求點B 的坐標;
(2)當點B 坐標為(0,1)時,求點C 的坐標;
(3)如圖 2,以 OB 為直角邊作等腰直角△OBD,點D在第一象限,連接CD交 y 軸于點E.在點 B 運動的過程中,BE 的長是否發(fā)生變化?若不變,求出 BE 的長;若變化,請說明理由.
【答案】(1)(0,) (2)(-1,-3) (3)BE長保持不變,BE的長為2
【解析】
(1)根據AC的長求出AB的長,再用勾股定理求B點坐標.
(2)過C作CM⊥y軸于M,通過判定△BCM≌△ABO(AAS),得出CM=BO=1,BM=AO=4,進而得到OM=3,據此可得C(-1,-3);
(3)過C作CM⊥y軸于M,根據△BCM≌△ABO,可得CM=BO,BM=OA=4,再判定△DBE≌△CME(AAS),可得BE=EM,進而得到BE=BM=2.
(1)∵△ABC是等腰直角三角形,AC 6
∴2AB2=36
∴AB=
設B點坐標為(0,a)(a>0)
在直角三角形AOB中,A(4,0)
∴16+a2=18
∴a=
∴B點的坐標為(0,)
(2)如圖1,過C作CM⊥y軸于M.
∵CM⊥y軸,
∴∠BMC=∠AOB=90°,
∴∠ABO+∠BAO=90°
∵∠ABC=90°,
∴∠CBM+∠ABO=90°,
∴∠CBM=∠BAO,
在△BCM與△ABO中,
,
∴△BCM≌△ABO(AAS),
∴CM=BO=1,BM=AO=4,
∴OM=3,
∴C(-1,-3);
(3)在B點運動過程中,BE長保持不變,BE的長為2,
理由:如圖2,過C作CM⊥y軸于M,
由(1)可知:△BCM≌△ABO,
∴CM=BO,BM=OA=4.
∵△BDO是等腰直角三角形,
∴BO=BD,∠DBO=90°,
∴CM=BD,∠DBE=∠CME=90°,
在△DBE與△CME中,
,
∴△DBE≌△CME(AAS),
∴BE=EM,
∴BE=BM=2.
科目:初中數學 來源: 題型:
【題目】以直線AB上一點O為端點作射線OC,將一塊直角三角板的直角頂點放在O處(注:∠DOE=90°).
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,且∠BOC=60°,求∠COE的度數;
(2)如圖②,將三板DOE繞O逆時針轉動到某個位置時,若恰好滿足5∠COD=∠AOE,且∠BOC=60°,求∠BOD的度數;
(3)如圖③,將直角三角板DOE繞點O逆時針方向轉動到某個位置,若OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校招生時,2640名學生的成績數據分別由兩位程序操作員各向計算機輸入一遍,已知甲的輸入速度是乙的2倍,結果甲比乙少用2小時輸完.問這兩個操作員每分鐘各能輸入多少名學生的成績?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,與BC相交于點F,過點B作BE⊥AD于點D,交AC延長線于點E,過點C作CH⊥AB于點H,交AF于點G,則下列結論:⑤;正確的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車分別從、兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達地后馬上以另一速度原路返回地(掉頭的時間忽略不計),乙車到達地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離(千米)與甲車的行駛時間(小時)之間的函數圖象,則當乙車到達地的時候,甲車與地的距離為__________千米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達終點
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度
C. 小蘇前15s跑過的路程大于小林前15s跑過的路程
D. 小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com