【題目】如圖,在△ABC中,AC=BC,∠ACB=90°AD平分∠BAC,與BC相交于點F,過點BBEAD于點D,交AC延長線于點E,過點CCHAB于點H,交AF于點G,則下列結論:;正確的有( )個.

A.1B.2C.3D.4

【答案】D

【解析】

①②正確,只要證明△BCE≌△ACF,△ADB≌△ADE即可解決問題;

③正確,只要證明GB=GA,得到△BDG是等腰直角三角形,即可得到;

④正確,求出∠CGF=67.5°=CFG,則CF=CG=CE,然后AE=AC+CE=BC+CG,即可得到結論;

⑤錯誤,作GMACM.利用角平分線的性質定理即可證明;

解:∵ADBE,

∴∠FDB=FCA=90°

∵∠BFD=AFC,

∴∠DBF=FAC,

∵∠BCE=ACF=90°,BC=AC,

∴△BCE≌△ACF

EC=CFAF=BE,故①正確,

∵∠DAB=DAE,AD=AD,∠ADB=ADE=90°

∴△ADB≌△ADE,

BD=DE,

AF=BE=2BD,故②正確,

如圖,連接BG,

CHABAC=AB,

BH=AH,∠BHG=AHG=90°

HG=HG,

∴△AGH≌△BGH,

BG=AG,∠GAH=GBH=22.5°,

∴∠DGB=GAH+GBH=45°,

∴△BDG是等腰直角三角形,

BD=DG=DE;故③正確;

由△ACH是等腰直角三角形,

∴∠ACG=45°,

∴∠CGF=45°+22.5°=67.5°,

∵∠CFG=DFB=90°-22.5°=67.5°,

∴∠CGF=CFG

CG=CF,

AB=AE,BC=AC,CE=CF=CG,

又∵AE=AC+CE

AB=BC+CG,故④正確;

GMACM,

由角平分線性質,GH=GM,

∴△AGH≌△AGMHL),

∴△AGH的面積與△AGM的面積相等,

故⑤錯誤;

綜合上述,正確的結論有:①②③④;

故選擇:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】 如圖(1),直線l上有2個點,則圖中有2條可用圖中字母表示的射線:A1A2A2A1,有1條線段:A1A2;

如圖(2),直線l上有3個點,則圖中有幾條可用圖中字母表示的射線,有幾條線段,并分別用圖中字母表示出來;

如圖(3),直線l上有n個點,則圖中有多少條可用圖中字母表示的射線,有多少條線段,分別用含n的代數(shù)式表示出來;

應用(3)中發(fā)現(xiàn)的規(guī)律解決問題:某校七年級共有8個班進行足球比賽,準備進行循環(huán)賽(即每兩隊之間賽一場),預計全部賽完共需多少場比賽?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學完《平面直角坐標系》和《一次函數(shù)》這兩章后,老師布置了這樣一道思考題:已知:如圖,在長方形中,,,點的中點,相交于點.求的面積.小明同學應用所學知識,順利地解決了此題,他的思路是這樣的:以所在的直線為軸,以所在的直線為軸建立適當?shù)钠矫嬷苯亲鴺讼担瑢懗鰣D中一些點坐標.根據(jù)一次函數(shù)的知識求出點的坐標,從而求得的面積.請你按照小明的思路解決這道思考題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,D是半徑為R的⊙O上一點,過點D作⊙O的切線交直徑AB的延長線于點C,下列四個條件:①AD=CD;②∠A=30°;③∠ADC=120°;DC=R.其中能使得BC=R的有________(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點 A(4,0),點 B y 軸正半軸上一點,如圖 1,以 AB 為直角邊作等腰直角三角形 ABC ABC 90

1)若 AC 6,求點B 的坐標;

2)當點B 坐標為(0,1)時,求點C 的坐標;

3)如圖 2,以 OB 為直角邊作等腰直角△OBD,點D在第一象限,連接CDy 軸于點E.在點 B 運動的過程中,BE 的長是否發(fā)生變化?若不變,求出 BE 的長;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的等邊△ABC的邊AB取一點D,過點DDEAC于點E,在BC延長線取一點F,使CF=AD,連接DFAC于點G,則EG的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,寬為20米,長為32米的長方形地面上,修筑寬度為x米的兩條互相垂直的小路,余下的部分作為耕地,如果要在耕地上鋪上草皮,選用草皮的價格是每平米a元,

1)求買草皮至少需要多少元?(用含a,x的式子表示)

2)計算a40,x2時,草皮的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個位上的數(shù)字之和為,如果,那么稱這個四位數(shù)為和平數(shù)

例如:1423,,因為,所以1423和平數(shù)

1)直接寫出:最小的和平數(shù)  ,最大的和平數(shù)   

2)將一個和平數(shù)的個位上與十位上的數(shù)字交換位置,同時,將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個和平數(shù)為一組相關和平數(shù)

例如:1423與4132為一組“相關和平數(shù)”

求證:任意的一組“相關和平數(shù)”之和是1111的倍數(shù).

3)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有和平數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的有(  )

①如果等腰三角形的底角為15°,那么腰上的高是腰長的一半;

②三角形至少有一個內角不大于60°

③連結任意四邊形各邊中點形成的新四邊形是平行四邊形;

④十邊形內角和為1800°

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案