精英家教網 > 初中數學 > 題目詳情
二次函數y=ax2+bx+c的圖象如圖,則下列各式中成立的個數是(  )
(1)abc<0;  (2)a+b+c<0;  (3)a+c>b;  (4)a<-
b
2
分析:由圖象知a<0,-
b
2a
>0,故b>0,而c>0,則abc<0.當x=1時,y>0,即a+c+b>0;當x=-1時,y<0,即a+c-b<0.根據對稱軸在x=1的左側,判斷出-
b
2a
<1,兩邊同時乘a,得a<-
b
2
解答:解:∵圖象開口向下,∴a<0,
∵-
b
2a
>0,∴b>0,
∵c>0,∴abc<0.故(1)正確;
當x=1時,y>0,即a+c+b>0,故(2)錯誤;
當x=-1時,y<0,即a+c-b<0,則a+c<b,故(3)錯誤.
∵對稱軸在x=1的左側,∴-
b
2a
<1,
∴a<-
b
2
,故(4)正確.
故選B.
點評:本題考查了二次函數的圖象和系數的關系,綜合運用拋物線性質與解析式系數間的關系.因a<0,把(4)a<-
b
2
兩邊同除以a,得1>-
b
2a
,即-
b
2a
<1,所以(4)是正確的;也可以根據對稱軸在x=1的左側,判斷出-
b
2a
<1,兩邊同時乘a,得a<-
b
2
,知(4)是正確的.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網點C(0,
3
)
,當x=-4和x=2時,二次函數y=ax2+bx+c(a≠0)的函數值y相等,連接AC、BC.
(1)求實數a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

二次函數y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果二次函數y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•孝感)二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案