【題目】在平面直角坐標系中,直線y=-分別與x軸、y軸交于點A、B,且點A的坐標為(8,0),四邊形ABCD是正方形.
(1)填空:b= ;
(2)求點D的坐標;
(3)點M是線段AB上的一個動點(點A、B除外),試探索在x上方是否存在另一個點N,使得以O、B、M、N為頂點的四邊形是菱形?若不存在,請說明理由;若存在,請求出點N的坐標.
【答案】(1)6;(2)點D的坐標為(14,8);(3)存在,點N的坐標為(4,3)或(,).
【解析】
(1)把(8,0)代入y=x+b即可求得b的值;
(2)過點D作DE⊥x軸于點E,證明△OAB≌△EDA,即可求得AE和DE的長,則點D的坐標即可求得;
(3)分兩種情況討論:①當OM=MB=BN=NO時,求出點M的坐標即可;②當OB=BN=NM=MO=6時,求出對角線交點的坐標即可.
解:(1)把(8,0)代入y=x+b,得:6+b=0,
解得:b=6,
故答案是:6;
(2)如圖1,過點D作DE⊥x軸于點E,
∵在正方形ABCD中,∠BAD=90°,
∴∠1+∠2=90°,
又∵在直角△OAB中,∠2+∠3=90°,
∴∠1=∠3,
在△OAB和△EDA中,,
∴△OAB≌△EDA(AAS),
∴AE=OB,DE=OA,
∵b=6,點A的坐標為(8,0),
∴AE=OB=6,DE=OA=8,
∴OE=8+6=14,
∴點D的坐標為(14,8);
(3)存在.
①如圖2,當OM=MB=BN=NO時,四邊形OMBN為菱形,則MN在OB的中垂線上,即M的縱坐標是3,
把y=3代入y=x+6中,得x=4,即M的坐標是(4,3),
則點N的坐標為(4,3);
②如圖3,當OB=BN=NM=MO=6時,四邊形BOMN為菱形,連接ON交BM于F,
∵ON⊥BM,
∴直線ON的解析式為:y=x,
聯(lián)立,解得:,
即點F的坐標為(,),
∴點N的坐標為(,),
綜上所述,滿足條件的點N的坐標為(4,3)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O是正方形ABCD的外接圓,P是⊙O上不與A、B重合的任意一點,則∠APB等于( )
A.45° B.60° C.45° 或135° D.60° 或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學很酷,讓我們用理性思維這一利器,去一幾何的魔法世界吧.請按要求,完成下面的繪圖:作圖要求:①僅使用無刻度直尺:②要構造的點必須是格點.
具體要求:
(1)在如圖6×6網(wǎng)格中,構造所有等腰三角形,其中個點為A,且一條邊長為;符合條件的三角形有 個,在圖上標出.
(2)簡述構造長度為的線段的理論依據(jù)及計算過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調(diào)查,調(diào)查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.
對霧霾了解程度的統(tǒng)計表:
對霧霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比較了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
請結合統(tǒng)計圖表,回答下列問題.
(1)本次參與調(diào)查的學生共有 人,m= ,n= ;
(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是 度;
(3)請補全條形統(tǒng)計圖;
(4)根據(jù)調(diào)查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛去.請用樹狀圖或列表法說明這個游戲規(guī)則是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年 3 月 12 日植樹節(jié)期間, 學校預購進 A、B 兩種樹苗,若購進 A種樹苗 3 棵,B 種樹苗 5 棵,需 2100 元,若購進 A 種樹苗 4 棵,B 種樹苗 10棵,需 3800 元.
(1)求購進 A、B 兩種樹苗的單價;
(2)若該單位準備用不多于 8000 元的錢購進這兩種樹苗共 30 棵,求 A 種樹苗至少需購進多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,平分,交于點,且,延長與的延長線交于點,連接,連接.下列結論中:①;②是等邊角形:③;④;⑤.其中正確的是( )
A.②③⑤B.①④⑤C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,若∠DAB的平分線AE交CD于E,連結BE,且BE也平分∠ABC,則以下的命題中正確的個數(shù)是( )
①BC+AD=AB ; ②E為CD中點
③∠AEB=90°; ④S△ABE=S四邊形ABCD
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com