【題目】如圖所示O是正方形ABCD的外接圓,P是O上不與A、B重合的任意一點,APB等于( )

A45° B.60° C.45° 或135° D.60° 或120°

【答案】C

【解析】

試題分析:此題考查了圓周角定理以及正多邊形與圓的性質(zhì)此題難度適中注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與分類討論思想的應(yīng)用首先連接OAOB,O是正方形ABCD的外接圓,即可求得AOB的度數(shù),又由圓周角定理,即可求得APB的度數(shù)

連接OAOB,

∵⊙O是正方形ABCD的外接圓,

∴∠AOB=90°,

若點P在優(yōu)弧ADB上,APB=AOB=45°;

若點P在劣弧AB上APB=180°-45°=135°

∴∠APB=45°或135°

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(x–2)(x–3)=m有實數(shù)根x1、x2,且x1<x2,則下列結(jié)論中錯誤的是

A. 當(dāng)m=0時,x1=2,x2=3

B. m>–

C. 當(dāng)m>0時,2<x1<x2<3

D. 二次函數(shù)y=(xx1)(xx2)+m的圖象與x軸交點的坐標(biāo)為(2,0)和(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汪老師要裝修自己帶閣樓的新居(下圖為新居剖面圖),在建造客廳到閣樓的樓梯AC時,為避免上樓時墻角F碰頭,設(shè)計墻角F到樓梯的豎直距離FG1.75m.他量得客廳高AB=2.8m,樓梯洞口寬AF=2m.閣樓陽臺寬EF=3m.請你幫助汪老師解決下列問題:

(1)要使墻角F到樓梯的豎直距離FG1.75m,樓梯底端C到墻角D的距離CD是多少米?

(2)在(1)的條件下,為保證上樓時的舒適感,樓梯的每個臺階小于20cm,每個臺階寬要大于20cm,問汪老師應(yīng)該將樓梯建幾個臺階?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在越來越多的人在用微信付款、轉(zhuǎn)賬,也可以提現(xiàn).把微信賬戶里的錢轉(zhuǎn)到銀行卡里叫做提現(xiàn).201631日起,每個微信賬戶終身享有元免費提現(xiàn)額度,當(dāng)累計提現(xiàn)額度超過元時,超出元的部分要支付的手續(xù)費.以后每次提現(xiàn)都要支付所提現(xiàn)金額的的手續(xù)費.

(1)張老師在今年第一次進行了提現(xiàn),金額為元,他需要支付手續(xù)費 元.

(2)李老師從201631日起至今,用自己的微信賬戶共提現(xiàn)次, 次提現(xiàn)的金額和手續(xù)費如下表:

第一次提現(xiàn)

第二次提現(xiàn)

第三次提現(xiàn)

提現(xiàn)金額(元)

手續(xù)費(元)

請問李老師前次提現(xiàn)的金額分別是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1中,、的平分線相交于點,過點、

(1)直接寫出圖1中所有的等腰三角形.指出、間有怎樣的數(shù)量關(guān)系?

(2)(1)的條件下,若,,求的周長;

(3)如圖2,若中,的平分線與三角形外角的平分線交于點,過點作,交,請問(1)、間的關(guān)系還是否存在,若存在,說明理由:若不存在,寫出三者新的數(shù)量關(guān)系,并說明理由;

(4)如圖3,的外角平分線的延長線相交于點,請直接寫出、之間的數(shù)量關(guān)系.不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接購物節(jié),某網(wǎng)店準(zhǔn)備購進甲、乙兩種運動鞋,甲種運動鞋每雙的進價比乙種運動鞋每雙的進價多60元,用30000元購進甲種運動鞋的數(shù)量與用21000元購進乙種運動鞋的數(shù)量相同.

1)求甲、乙兩種運動鞋的進價(用列分式方程的方法解答):

2)該網(wǎng)店老板計劃購進這兩種運動鞋共200雙,且甲種運動鞋的進貨數(shù)量不少于乙種運動鞋數(shù)量的,甲種運動鞋每雙售價為350元,乙種運動鞋每雙售價為300元.設(shè)甲種運動鞋的進貨量為m雙,銷售完甲、乙兩種運動鞋的總利潤為w元,求wm的函數(shù)關(guān)系式,并求總利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、BO上,直線ACO的切線,ODOB,連接ABOC于點D

求證:AC=CD

AC=2,AO=,求OD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論:=; ②=;③=;④=.其中正確的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=-分別與x軸、y軸交于點A、B,且點A的坐標(biāo)為(8,0),四邊形ABCD是正方形.

1)填空:b= ;

2)求點D的坐標(biāo);

3)點M是線段AB上的一個動點(A、B除外),試探索在x上方是否存在另一個點N,使得以O、BM、N為頂點的四邊形是菱形?若不存在,請說明理由;若存在,請求出點N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案