【題目】如圖,是等腰的頂角的平分線,點在上,點在上,且平分,則下列結論錯誤的是 ( )
A.B.C.D.
【答案】D
【解析】
先根據(jù)ASA證明△AED≌△AFD,得到AE=AF,DE=DF,∠AED=∠AFD,進而得到BE=FC,∠BED=∠CFD,從而證明△BED≌△CFD,再判斷各選項.
∵AD是等腰△ABC的頂角的平分線,AD平分∠EDF,
∴∠DAE=∠DAF,∠EDA=∠FDA,
在△ADE和△ADF中
,
∴△ADE≌△ADF(ASA).
∴AE=AF,DE=DF,∠AED=∠AFD,
∴∠BED=∠CFD,
∵△ABC是等腰三角形,
∴AB=AC,
又∵AE=AF,
∴BE=CF,(故A選項正確)
在△BED和△CFD中,
,
∴△BED≌△CFD(SAS),
∴,.(故B、C正確).
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用4000元購進一批某品牌的文化衫若干件,很快售完,該店又用6300元錢購進第二批這種文化衫,所進的件數(shù)比第一批多40%,每件文化衫的進價比第一批每件文化衫的進價多10元,請解答下列問題:
(1)求購進的第一批文化衫的件數(shù);
(2)為了取信于顧客,在這兩批文化衫的銷售中,售價保持了一致.若售完這兩批文化衫服裝店的總利潤不少于4100元錢,那么服裝店銷售該品牌文化衫每件的最低售價是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【本小題滿分11分】如圖,已知拋物線的頂點D的坐標為(1,),且與x軸交于A、B兩點,與y軸交于C點,A點的坐標為(4,0).P點是拋物線上的一個動點,且橫坐標為m.
(l)求拋物線所對應的二次函數(shù)的表達式;
(2)若動點P滿足∠PAO不大于45°,求P點的橫坐標m的取值范圍;
(3)當P點的橫坐標時,過p點作y軸的垂線PQ,垂足為Q.問:是否存在P點,使∠QPO=∠BCO?若存在,請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=a(x+m)2的頂點坐標為(﹣1,0),且過點A(﹣2,﹣).
(1)求這個二次函數(shù)的解析式;
(2)點B(2,﹣2)在這個函數(shù)圖象上嗎?
(3)你能通過左,右平移函數(shù)圖象,使它過點B嗎?若能,請寫出平移方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點,過 A 作 y 軸的垂線,交函數(shù)的圖象于點 C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,D 是 BC 邊的中點,E、F 分別在 AD 及其延長線上,CE∥BF,連接BE、CF.
(1)求證:△BDF ≌△CDE;
(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,中,,點在數(shù)軸-1處,點在數(shù)軸1處,,,則數(shù)軸上點對應的數(shù)是 .
(2)如圖2,點是直線上的動點,過點作垂直軸于點,點是軸上的動點,當以,,為頂點的三角形為等腰直角三角形時點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師所留的作業(yè)中有這樣一個分式的計算題:,甲、乙兩位同學完成的過程分別如下:
老師發(fā)現(xiàn)這兩位同學的解答都有錯誤.
請你從甲、乙兩位同學中,選擇一位同學的解答過程,幫助他分析錯因,并加以改正.
(1)我選擇 同學的解答過程進行分析.(填“甲”或“乙”)該同學的解答從第 步開始出現(xiàn)錯誤,錯誤的原因是 ;
(2)請重新寫出完成此題的正確解答過程.
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經過B、E、C三點的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com