【題目】(1)如圖1,中,,點(diǎn)在數(shù)軸-1處,點(diǎn)在數(shù)軸1處,,,則數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是 .
(2)如圖2,點(diǎn)是直線上的動(dòng)點(diǎn),過點(diǎn)作垂直軸于點(diǎn),點(diǎn)是軸上的動(dòng)點(diǎn),當(dāng)以,,為頂點(diǎn)的三角形為等腰直角三角形時(shí)點(diǎn)的坐標(biāo)為 .
【答案】(1);(2)M坐標(biāo)是(-3,-3),(-1,1),(,).
【解析】
(1)通過勾股定理求出線段MB,而線段MA=MB,進(jìn)而知道點(diǎn)A對(duì)應(yīng)的數(shù),減去1即可得出答案.
(2)分四種情況考慮:當(dāng)M運(yùn)動(dòng)到(-1,1)時(shí),ON=1,MN=1,由MN⊥x軸,以及ON=MN;又當(dāng)M運(yùn)動(dòng)到第三象限時(shí),要MN=MP,且PM⊥MN時(shí);若MN為斜邊時(shí),則∠ONP=45°,所以ON=OP,求出此時(shí)M坐標(biāo);又當(dāng)點(diǎn)M′在第二象限,M′N′為斜邊時(shí),這時(shí)N′P=M′P,∠M′N′P=45°,求出此時(shí)M坐標(biāo),綜上,得到所有滿足題意M的坐標(biāo).
解:在Rt△MBC中,∠MCB=90°,
∴
∴,
∵MA=MB,
∴,
∵點(diǎn)M在數(shù)軸-1處,
∴數(shù)軸上點(diǎn)A對(duì)應(yīng)的數(shù)是;
(2)①如圖1,
當(dāng)M運(yùn)動(dòng)到(-1,1)時(shí),ON=1,MN=1,
∵MN⊥x軸,所以由ON=MN可知,△MNP為等腰直角三角形;
②如圖2,
當(dāng)M運(yùn)動(dòng)到第三象限時(shí),要MN=MP,且PM⊥MN,
設(shè)點(diǎn)M(x,2x+3),則有:-x=-(2x+3),
解得:x=-3,
所以點(diǎn)M坐標(biāo)為(-3,-3).
若MN為斜邊時(shí),則∠ONP=45°,所以ON=OP,設(shè)點(diǎn)M(x,2x+3),
則有,化簡(jiǎn)得-2x=-2x-3,
這方程無解,所以這時(shí)不存在符合條件的M點(diǎn);
③如圖2,
∵當(dāng)點(diǎn)M′在第二象限,M′N′為斜邊時(shí),這時(shí)N′P=M′P,∠M′N′P=45°,
設(shè)點(diǎn)M′(x,2x+3),則OP=ON′,而,
∴有,
解得:,
∴M′(,),
綜上,符合條件的點(diǎn)M坐標(biāo)是(-3,-3),(-1,1),(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線交軸于點(diǎn),交軸于點(diǎn),以為邊作正方形,請(qǐng)解決下列問題:
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)求直線的解析式;
(3)在直線上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點(diǎn),AB⊥OA交x軸于點(diǎn)B,且OA=AB.
(1)求雙曲線的解析式;
(2)求點(diǎn)C的坐標(biāo),并直接寫出y1<y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等腰的頂角的平分線,點(diǎn)在上,點(diǎn)在上,且平分,則下列結(jié)論錯(cuò)誤的是 ( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾分類”意識(shí)已經(jīng)深入人心.我校王老師準(zhǔn)備用元(全部用完)購(gòu)買兩類垃圾桶,已知類桶單價(jià)元,類桶單價(jià)元,設(shè)購(gòu)入類桶個(gè),類桶個(gè).
(1)求關(guān)于的函數(shù)表達(dá)式.
(2)若購(gòu)進(jìn)的類桶不少于類桶的倍.
①求至少購(gòu)進(jìn)類桶多少個(gè)?
②根據(jù)臨場(chǎng)實(shí)際購(gòu)買情況,王老師在總費(fèi)用不變的情況下把一部分類桶調(diào)換成另一種類桶,且調(diào)換后類桶的數(shù)量不少于類桶的數(shù)量,已知類桶單價(jià)元,則按這樣的購(gòu)買方式,類桶最多可買 個(gè).(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)商場(chǎng)出售相同的某種商品,每件售價(jià)均為3000元,并且多買都有一定的優(yōu)惠.甲商場(chǎng)的優(yōu)惠條件是:第一件按原售價(jià)收費(fèi),其余每件優(yōu)惠30%;乙商場(chǎng)的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買商品為x件時(shí),甲商場(chǎng)收費(fèi)為y1元,乙商場(chǎng)收費(fèi)為y2元.
(1)分別求出y1,y2與x之間的關(guān)系式;
(2)當(dāng)甲、乙兩個(gè)商場(chǎng)的收費(fèi)相同時(shí),所買商品為多少件?
(3)當(dāng)所買商品為5件時(shí),應(yīng)選擇哪個(gè)商場(chǎng)更優(yōu)惠?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫字是學(xué)生的一項(xiàng)基本功,為了了解某校學(xué)生的書寫情況,隨機(jī)對(duì)該校部分學(xué)生進(jìn)行測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).根據(jù)調(diào)查結(jié)果繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,回答以下問題:
(1)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該校共有2000名學(xué)生,估計(jì)該校書寫等級(jí)為“D級(jí)”的學(xué)生約有 人;
(3)隨機(jī)抽取了4名等級(jí)為“A級(jí)”的學(xué)生,其中有3名女生,1名男生,現(xiàn)從這4名學(xué)生中任意抽取2名,用列表或畫樹狀圖的方法,求抽到的兩名學(xué)生都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,該村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)H(A、H、B在同一條直線上),并新修一條路CH,測(cè)得CB=2.5千米,CH=2千米,HB=1.5千米.
(1)問CH是否為從村莊C到河邊的最近路?請(qǐng)通過計(jì)算加以說明;
(2)求原來的路線AC的長(zhǎng).(精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列結(jié)論錯(cuò)誤的是( ).
A.AE∥BC B. ∠ADE=∠BDC
C.△BDE是等邊三角形 D. △ADE的周長(zhǎng)是9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com