【題目】如圖,在等邊中,,點上,且,點上一動點,連接,將線段繞點逆時針旋轉(zhuǎn)得到線段,若要使點恰好在上,則的長為().

A. 4B. 5C. 6D. 8

【答案】C

【解析】

先計算出OC=6,根據(jù)等邊三角形的性質(zhì)得∠A=C=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OD=OP,∠POD=60°,根據(jù)三角形內(nèi)角和和平角定義得∠1+2+A=180°,∠1+3+POD=180°,利用等量代換可得∠2=3,然后根據(jù)“AAS”判斷AOP≌△CDO,則AP=CO=6

AC=9AO=3,

OC=6,

∵△ABC為等邊三角形,

∴∠A=C=60°,

∵線段OP繞點D逆時針旋轉(zhuǎn)60゜得到線段OD,要使點D恰好落在BC上,

OD=OP,POD=60°,

∵∠1+2+A=180°,1+3+POD=180°

∴∠1+2=120°,1+3=120°,

∴∠2=3,

AOPCDO

∴△AOP≌△CDO,

AP=CO=6

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:

次數(shù)

購買數(shù)量(件

購買總費用(元

A

B

第一次

2

1

55

第二次

1

3

65

根據(jù)以上信息解答下列問題:

(1)求A,B兩種商品的單價;

(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九龍坡區(qū)某社區(qū)開展全民讀書活動,以豐富人們業(yè)余文化生活現(xiàn)計劃籌資30000元用于購買科普書籍和文藝刊物

(1)計劃購買文藝刊物的資金不少于購買科普書籍資金的2倍,那么最少用多少資金購買文藝刊物?

(2)經(jīng)初步了解,有200戶居民自愿參與集資,那么平均每戶需集資150元.經(jīng)籌委會進步宣傳,自愿參加的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中a>50),如果每戶平均集資在150元的基礎(chǔ)上減少a%,那么實際籌資將比計劃籌資多6000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,EBD上的一點,∠BAE=∠BCE,∠AED=∠CED,點GBCAE延長線的交點,AGCD相交于點F

1)求證:四邊形ABCD是正方形;

2)當(dāng)AE3EF,DF1時,求GF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD ABC 的角平分線,DE,DF 分別是BAD ACD 的高,得到下列四個結(jié)論:①OAOD;②ADEF;③當(dāng)∠A90°時,四邊形 AEDF 是正方形;④AE+DFAF+DE.其中正確的是_________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形 OABC 為菱形,點 C 的坐標為(4,0),∠AOC = 60°,垂直于 x 軸的直線 l y 軸出發(fā),沿 x 軸正方向以每秒 1 個單位長度的速度運動,設(shè)直線 l 菱形 OABC 的兩邊分別交與點 M、N(點 M 在點 N 的上方).

1)求 AB 兩點的坐標;

2)設(shè) OMN 的面積為 S,直線 l 運動時間為 t 秒(0 ≤t ≤6 ),試求 S t 的函數(shù)表達 式;

3)在題(2)的條件下,t 為何值時,S 的面積最大?最大面積是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,完成(1)-(3).

數(shù)學(xué)課上,老師出示了這樣一道題:

如圖,ABC中,DBC中點,且AD=AC,MAD中點,連結(jié)CM并延長交ABN.

探究線段AN、MNCN之間的數(shù)量關(guān)系,并證明.

同學(xué)們經(jīng)過思考后,交流了自已的想法:

小明:通過觀察和度量,發(fā)現(xiàn)線段ANAB之間存在某種數(shù)量關(guān)系.”

小強:通過倍長不同的中線,可以得到不同的結(jié)論,但都是正確的,大家就大膽的探究吧.”

小偉:通過構(gòu)造、證明相似三角形、全等三角形,就可以將問題解決.”

......

老師: “若其他條件不變,設(shè)AB=a,則可以用含a的式子表示出線段CM的長.”

1)探究線段AN、AB之間的數(shù)量關(guān)系,并證明;

2)探究線段AN、MN、CN之間的數(shù)量關(guān)系,并證明;

3)設(shè)AB=a,求線段CM的長(用含a的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實國務(wù)院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)關(guān)系式;

(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個木制正方體的表面涂上顏色,然后將正方體分割成64個大小相同的小正方體.從這些小正方體中任意取出一個,求取出的小正方體:

1)三面涂有顏色的概率;

2)兩面涂有顏色的概率;

3)各個面都沒有顏色的概率.

查看答案和解析>>

同步練習(xí)冊答案