【題目】如圖,在矩形 ABCD中,對角線 AC 與 BD 相交于點 O,過點 A作 BD的垂線,垂足為 E.已知∠EAD=3∠BAE,求∠EAO 的度數(shù)( )
A.22.5°B.67.5°C.45°D.60°
【答案】C
【解析】
首先根據(jù)矩形性質得出AO=DO=BO=CO,∠BAD=90°,由此可得∠OAD=∠ODA,∠EAD+∠BAE=90°,然后根據(jù)∠EAD=3∠BAE可以求出∠EAD=67.5°,∠BAE=22.5°,據(jù)此進得出∠EDA的度數(shù),最后進一步求出答案即可.
∵四邊形ABCD為矩形,
∴AO=DO=BO=CO,∠BAD=90°,
∴∠OAD=∠ODA,∠EAD+∠BAE=90°,
∵∠EAD=3∠BAE,
∴∠EAD=67.5°,∠BAE=22.5°,
在Rt△AED中,∠EDA=90°∠EAD=22.5°,
∴∠OAD=∠EDA=22.5°,
∴∠EAO=∠EAD∠OAD=67.5°22.5°=45°,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】AB∥CD,直線a交AB、CD分別于點E、F,點M在EF上,P是直線CD上的一個動點,(點P不與F重合)
(1)當點P在射線FC上移動時,∠FMP+∠FPM =∠AEF成立嗎?請說明理由。
(2)當點P在射線FD上移動時,∠FMP+∠FPM與∠AEF有什么關系?并說明你的理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是△ABC的內心,AE的延長線和△ABC的外接圓相交于點D,連接BD,BE,CE,若∠CBD=32°,則∠BEC的度數(shù)為( )
A.128°
B.126°
C.122°
D.120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】補全下列推理過程:
如圖,已知AB∥CE,∠A=∠E,試說明:∠CGD=∠FHB.
解:因為AB∥CE(已知),
所以∠A=∠ ( ).
因為∠A=∠E(已知),
所以∠ =∠ (等量代換).
所以 ∥ ( ).
所以∠CGD=∠ ( ).
因為∠FHB=∠GHE( ),
所以∠CGD=∠FHB(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從數(shù)﹣2,﹣ ,0,4中任取一個數(shù)記為m,再從余下的三個數(shù)中,任取一個數(shù)記為n,若k=mn,則正比例函數(shù)y=kx的圖象經(jīng)過第三、第一象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)計劃把甲種貨物306噸和乙種貨物230噸運往某地,已知有A、B兩種不同規(guī)格的貨車共50輛,如果每輛A型貨車最多可裝甲種貨物7噸和乙種貨物3噸,每輛B型貨車最多可裝甲種貨物5噸和乙種貨物7噸.
(1)裝貨時如何安排A、B兩種貨車的輛數(shù),共有哪些方案?
(2)使用A型車每輛費用為600元,使用B型車每輛費用800元,上述方案中,哪個方案運費最?最省的運費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解“課程選修”的情況,對報名參加“藝術鑒賞”、“科技制作”、“數(shù)學思維”、“閱讀寫作”這四個選修項目的學生(每人限報一項)進行抽樣調查,下面是根據(jù)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調查了名學生,扇形統(tǒng)計圖中,“藝術鑒賞”所對應的圓心角的度數(shù)是度;
(2)請把這個條形統(tǒng)計圖補充完整;
(3)現(xiàn)該校700名學生報名參加這四個選修項目,請你估計有多少名學生參加了“數(shù)學思維”項目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,點A、B為函數(shù)L圖象上的任意兩點,點A坐標為(x1 , y1),點B坐標為(x2 , y2),把式子 稱為函數(shù)L從x1到x2的平均變化率;對于函數(shù)K:y=2x2﹣3x+1圖象上有兩點A(x1 , y1)和B(x2 , y2),當x1=1,x2﹣x1= 時,函數(shù)K從x1到x2的平均變化率是;當x1=1,x2﹣x1= (n為正整數(shù))時,函數(shù)K從x1到x2的平均變化率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com