【題目】已知點P是Rt△ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn).
(1)如圖1,當(dāng)點P為AB的中點時,連接AF,BE.求證:四邊形AEBF是平行四邊形;
(2)如圖2,當(dāng)點P不是AB的中點,取AB的中點Q,連接EQ,F(xiàn)Q.試判斷△QEF的形狀,并加以證明.
【答案】
(1)證明:如圖1,
∵點Q為AB中點,∴AQ=BQ.
∵BF⊥CP,AE⊥CP,
∴BF∥AE,∠BFQ=∠AEQ.
在△BFQ和△AEQ中,
,
∴△BFQ≌△AEQ(AAS).
∴QE=QF.
∴四邊形AEBF是平行四邊形
(2)證明:△QEF是等腰三角形,如圖2,
延長FQ交AE于點D,
由(1)知AE∥BF,
∴∠QAD=∠FBQ.
在△FBQ和△DAQ中,
,
∴△FBQ≌△DAQ(ASA),
∴QF=QD.
∵AE⊥CP,
∴EQ是直角三角形DEF斜邊上的中線,
∴QE=QF=QD,即QE=QF,
∴△QEF是等腰三角形
【解析】(1)結(jié)合已知證明△BFQ≌△AEQ,進一步得到對角線互相平分即可;(2)延長FQ交AE于點D,證明△FBQ≌△DAQ,結(jié)合直角三角形斜邊中線等于斜邊的一半即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價200元,領(lǐng)帶每條定價40元.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
①買一套西裝送一條領(lǐng)帶;
②西裝和領(lǐng)帶都按定價的90%付款.
現(xiàn)某客戶要到該服裝廠購買西裝20套,領(lǐng)帶x條(x>20).
(1)若該客戶按方案①購買,需付款元(用含x的代數(shù)式表示);
若該客戶按方案②購買,需付款元(用含x的代數(shù)式表示);
(2)若x=30,通過計算說明此時按哪種方案購買較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點E為AB的中點,連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時,四邊形DCBE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計算:3×(﹣2)2﹣|﹣4|﹣6×
(2)先化簡,再求值: x﹣2( x2﹣y2)﹣[2y﹣(x2﹣2y2)],其中x=2,y=﹣4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,正方形ABCD的對角線AC,BD相交于點O,正方形A′B′C′D′的頂點A′與點O重合,A′B′交BC于點E,A′D′交CD于點F.
(1)求證:OE=OF;
(2)若正方形ABCD的對角線長為4,求兩個正方形重疊部分的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角尺的直角頂點C疊放在一起.
(1)判斷∠ACE與∠BCD的大小關(guān)系,并說明理由;
(2)若∠DCE=30°,求∠ACB的度數(shù);
(3)猜想:∠ACB與∠DCE有怎樣的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“水是生命之源”,某城市自來水公司為了鼓勵居民節(jié)約用水,規(guī)定按以下標(biāo)準(zhǔn)收取水費:
用水量/月 | 單價(元/m3) |
不超過20m3 | 2.8 |
超過20m3的部分 | 3.8 |
另:每立方米用水加收0.2元的城市污水處理費
(1)如果1月份某用戶用水量為19m3 , 那么該用戶1月份應(yīng)該繳納水費元.
(2)某用戶2月份共繳納水費80元,那么該用戶2月份用水多少m3?
(3)若該用戶水表3月份出了故障,只有70%的用水量記入水表中,這樣該用戶在3月份只繳納了58.8元水費,問該用戶3月份實際應(yīng)該繳納水費多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com