【題目】定義:若a+b=2,則稱a與b是關于1的平衡數(shù).
(1)直接填寫:①3與_ 是關于1的平衡數(shù): :
②1-x與________是關于 1的平衡數(shù)(用含x的代數(shù)式表示);
(2)若,,先化簡a. b,再判斷a與b是否是關于1的平衡數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩城市之間開通了動車組高速列車.已知每隔2h有一列速度相同的動車組列車從甲城開往乙城.如圖,OA是第一列動車組列車離開甲城的路程s(km)與運行時間t(h)的函數(shù)圖象,BC是一列從乙城開往甲城的普通快車距甲城的路程s(km)與運行時間t(h)的函數(shù)圖象.請根據(jù)圖中的信息,解答下列問題:
(1)從圖象看,普通快車發(fā)車時間比第一列動車組列車發(fā)車時間 1h(填”早”或”晚”),點B的縱坐標600的實際意義是 ;
(2)請直接在圖中畫出第二列動車組列車離開甲城的路程s(km)與時間t(h)的函數(shù)圖象;
(3)若普通快車的速度為100km/h,
①求第二列動車組列車出發(fā)多長時間后與普通快車相遇?
②請直接寫出這列普通快車在行駛途中與迎面而來的相鄰兩列動車組列車相遇的時間間隔.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑點F、C是半圓弧ABC上的三等份點,連接AC,AF,過點C作CD⊥AF交AF的延長線于點D,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在∠△ACB和△DCE中,AC=BC,CD=CE,∠ACB=∠DCE=90°,連接AE、BD交于點O,AE與DC交于點M,BD與AC交于點N.
(1)試判斷AE、BD之間的關系,并說明理由;
(2)連接CO,則下面兩個結論中選擇你認為正確的一個加以說明①射線CO平分∠ACD ②射線OC平分∠BOE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月13日是“母親節(jié)”,某校開展“感恩母親,做點家務”活動為了了解同學們在母親節(jié)這一天做家務情況,學校隨機抽查了部分同學,并用得到的數(shù)據(jù)制成如下不完整的統(tǒng)計表:
做家務時間(小時) | 人數(shù) | 所占百分比 |
A組:0.5 | 15 | 30% |
B組:1 | 30 | 60% |
C組:1.5 | x | 4% |
D組:2 | 3 | 6% |
合計 | y | 100 |
(1)統(tǒng)計表中的x= ,y= ;
(2)小君計算被抽查同學做家務時間的平均數(shù)是這樣的:
第一步:計算平均數(shù)的公式是,
第二步:該問題中n=4,x1=0.5,x2=1,x3=1.5,x4=2,
第三步:=1.25(小時)
小君計算的過程正確嗎?如果不正確,請你計算出正確的做家務時間的平均數(shù);
(3)現(xiàn)從C,D兩組中任選2人,求這2人都在D組中的概率(用樹形圖法或列表法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知: ,.
(1)當x=1和-1時,分別求P,Q的值;
(2)當x=19時,P的值為a, Q的值為b,當x=-19時,分別求P, Q的值(用含a,b的代數(shù)式表示);
(3)當x=m時,P, Q的值分別為c, d; 當x=-m時,P, Q的值分別為e, f,則在c,d, e, f四個有理數(shù)中,以下判斷正確的是 (只要填序號即可).
①有兩個相等的正數(shù);②有兩個互為相反數(shù);③至多有兩個正數(shù);④至少有兩個正數(shù);⑤至多有一個負數(shù);⑥至少有一個負數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點F.求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,3),B(3,0),C(5,4),∠OAB=∠OBA=45°,點P為坐標系中第一象限內一點(不與C重合),若△BAP≌△ABC,則點P坐標為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作體驗
(1)如圖1,已知△ABC,請畫出△ABC的中線AD,并判斷△ABD與△ACD的面積大小關系.
(2)如圖2,在平面直角坐標系中,△ABC的邊BC在x軸上,已知點A(2,4),B(–1,0),C(3,0),試確定過點A的一條直線l,平分△ABC的面積,請寫出直線l的表達式.
綜合運用
(3)如圖3,在平面直角坐標系中,如果A(1,4),B(3,2),那么在直線y=–4x+20上是否存在一點C,使直線OC恰好平分四邊形OACB的面積?若存在,請計算點C的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com