【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):

當(dāng)a0b0時:

2=a2+b≥0

a+b≥2,當(dāng)且僅當(dāng)a=b時取等號.

請利用上述結(jié)論解決以下問題:

1)請直接寫出答案:當(dāng)x0時,x+的最小值為   .當(dāng)x0時,x+的最大值為   ;

2)若y=,(x>﹣1),求y的最小值;

3)如圖,四邊形ABCD的對角線ACBD相交于點(diǎn)O,AOB、COD的面積分別為49,求四邊形ABCD面積的最小值.

【答案】(1)2;﹣2.(2)y的最小值為9;(3)四邊形ABCD面積的最小值為25

【解析】

1)當(dāng)x0時,按照公式a+b2(當(dāng)且僅當(dāng)a=b時取等號)來計算即可;當(dāng)x0時,﹣x00,則也可以按公式a+b2(當(dāng)且僅當(dāng)a=b時取等號)來計算;

2)將y的分子變形,分別除以分母,展開,將含x的項用題中所給公式求得最小值,再加上常數(shù)即可;

3)設(shè)SBOC=x,已知SAOB=4,SCOD=9,由三角形面積公式可知:SBOCSCOD=SAOBSAOD,用含x的式子表示出SAOD,再表示出四邊形的面積,根據(jù)題中所給公式求得最小值,加上常數(shù)即可.

1)當(dāng)x0時,x22;

當(dāng)x0時,﹣x0,0

∵﹣x22,∴則x(﹣x)≤﹣2,∴當(dāng)x0時,x的最小值為 2.當(dāng)x0時,x的最大值為﹣2

故答案為:2,﹣2

2)∵x>﹣1,∴x+10,∴y=x+1525=4+5=9,∴y的最小值為9

3)設(shè)SBOC=x,已知SAOB=4,SCOD=9

則由等高三角形可知:SBOCSCOD=SAOBSAOD,∴x9=4SAOD,∴SAOD,∴四邊形ABCD面積=4+9+x13+225

當(dāng)且僅當(dāng)x=6時,取等號,∴四邊形ABCD面積的最小值為25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面直角坐標(biāo)系中,直線y=x+2x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C


1)求A,BC三點(diǎn)的坐標(biāo);
2)求△AOC的面積;
3)已知點(diǎn)Px軸正半軸上的一點(diǎn),若△COP是等腰三角形,直接寫點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AEBD于點(diǎn)E,CF平分∠BCD,交EA的延長線于點(diǎn)F,且BC=4,CD=2,給出下列結(jié)論:①∠BAE=CAD;②∠DBC=30°;AE=;AF=,其中正確結(jié)論的個數(shù)有(  )

A.1B.2C.3D.432

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB的長為10,弦AC的長為5,∠ACB的平分線交O于點(diǎn)D.

(1)∠ADC的度數(shù);

(2)求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點(diǎn)E.點(diǎn)F為CD延長線上,且DF=BC.

(1)證明:AC=AF;

(2)若AD=2,AF=,求AE的長;

(3)若EG∥CF交AF于點(diǎn)G,連接DG.證明:DG為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出ABC向下平移4個單位長度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是 

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是   ;

(3)A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 明天降雨的概率是50%”表示明天有半天都在降雨

B. 數(shù)據(jù)4,3,5,5,0的中位數(shù)和眾數(shù)都是5

C. 要了解一批鋼化玻璃的最少允許碎片數(shù),應(yīng)采用普查的方式

D. 若甲、乙兩組數(shù)中各有20個數(shù)據(jù),平均數(shù)=10,方差s2=1.25,s2=0.96,則說明乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這3個盒子裝入一只不透明的袋子中.

(1)攪勻后從中摸出1個盒子,求摸出的盒子中是型矩形紙片的概率;

(2)攪勻后先從中摸出1個盒子(不放回),再從余下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在Rt中,,點(diǎn)是斜邊的中點(diǎn),,且,于點(diǎn),聯(lián)結(jié)

1)求證:

2)當(dāng)時,求的值;

3)在(2)的條件下,求的值.

查看答案和解析>>

同步練習(xí)冊答案