【題目】已知反比例函數y=(k為常數).
(1)若點P1(,y1)和點P2(﹣,y2)是該反比例函數圖象上的兩點,試利用反比例函數的性質比較y1和y2的大小;
(2)設點P(m,n)(m>0)是其圖象上的一點,過點P作PM⊥x軸于點M.若tan∠POM=2,PO=(O為坐標原點),求k的值,并直接寫出不等式kx+>0的解集.
【答案】(1)y1>y2;(2)k=±1,①當k=﹣1時,解集為x<﹣或0<x<;②當k=1時,解集為x>0.
【解析】試題(1)先根據反比例函數的解析式判斷出函數圖象所在的象限及其增減性,再根據P1、P2兩點的橫坐標判斷出兩點所在的象限,故可得出結論.
(2)根據題意求得﹣n=2m,根據勾股定理求得m=1,n=﹣2,得到P(1,﹣2),即可得到﹣k2﹣1=﹣2,即可求得k的值,然后分兩種情況借助反比例函數和正比例函數圖象即可求得.
試題解析:(1)∵﹣k2﹣1<0,∴反比例函數在每一個象限內y隨x的增大而增大,∵<<0,∴y1>y2;
(2)點P(m,n)在反比例函數的圖象上,m>0,∴n<0,∴OM=m,PM=﹣n,∵tan∠POM=2,∴ =2,∴﹣n=2m,∵PO=,∴m2+(﹣n)2=5,∴m=1,n=﹣2,∴P(1,﹣2),∴﹣k2﹣1=﹣2,解得k=±1,①當k=﹣1時,則不等式的解集為:x<﹣或0<x<;
②當k=1時,則不等式的解集為:x>0.
科目:初中數學 來源: 題型:
【題目】小莉的爸爸一面利用墻(墻的最大可用長度為11m),其余三面用長為40m的塑料網圍成矩形雞圈(其俯視圖如圖所示矩形ABCD),設雞圈的一邊AB長為xm,面積ym2.
(1)寫出y與x的函數關系式;
(2)如果要圍成雞圈的面積為192m2的花圃,AB的長是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了培養(yǎng)學生的閱讀習慣,某校開展了“讀好書,助成長”系列活動,并準備購置一批圖書,購書前,對學生喜歡閱讀的圖書類型進行了抽樣調查,并將調查數據繪制成兩幅不完整的統計圖,如圖所示,根據統計圖所提供的信息,回答下列問題:
(1)本次調查共抽查了 名學生;
(2)兩幅統計圖中的m= ,n= .
(3)已知該校共有960名學生,請估計該校喜歡閱讀“A”類圖書的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李老師在與同學進行“螞蟻怎樣爬最近”的課題研究時設計了以下三個問題,請你根據下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1) 如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2) 如圖2,有一圓柱形食品盒,它的高等于16cm,底面直徑為20cm.如果在盒外底面的邊緣A處有一只螞蟻,它想吃到盒外對面中點B處的食物;(盒的厚度和螞蟻的大小忽略不計,結果可含π)
(3) 如圖3, 有一無蓋的圓柱形食品盒,它的高等于16cm,底面直徑為20cm.如果在盒外底面的邊緣A處有一只螞蟻,它想吃到盒內對面中點B處的食物.(盒的厚度和螞蟻的大小忽略不計,結果可含π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學將組織七年級學生春游一天,由王老師和甲、乙兩同學到客車租賃公司洽談租車事宜.
(1)兩同學向公司經理了解租車的價格,公司經理對他們說:“公司有45座和60座兩種型號的客車可供租用,60座的客車每輛每天的租金比45座的貴100元.”王老師說:“我們學校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎”甲、乙兩同學想了一下,都說知道了價格.
聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?
(2)公司經理問:“你們準備怎樣租車”,甲同學說:“我的方案是只租用45座的客車,可是會有一輛客車空出30個座位”;乙同學說“我的方案只租用60座客車,正好坐滿且比甲同學的方案少用兩輛客車”,王老師在﹣旁聽了他們的談話說:“從經濟角度考慮,還有別的方案嗎”?如果是你,你該如何設計租車方案,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個等腰直角三角形OA2A3,以OA3為直角邊作第三個等腰直角三角形OA3A4,…,依此規(guī)律,得到等腰直角三角形OA2017A2018,則點A2017的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在不透明的袋子中有四張標著數字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.
小明畫出樹狀圖如圖所示:
小華列出表格如下:
回答下列問題:
(1)根據小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機抽出一張卡片后 (填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據小華的游戲規(guī)則,表格中①表示的有序數對為 ;
(3)規(guī)定兩次抽到的數字之和為奇數的獲勝,你認為誰獲勝的可能性大?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠B=90°∠A
(1)如圖1,求證:AB=AC;
(2)如圖2,若∠BAC=90°,點D為AB上一點,過點B作直線CD的垂線,垂足為E,連接AE, 求∠AEC的度數;
(3)如圖3,在(2)的條件下,過點A作AE的垂線交CE于點F,連接BF,若∠ABF-∠EAB=15°,G為DF上一點,連接AG,若∠AGD=∠EBF,AG=6,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形網格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置。如圖所示,
現將△ABC平移后得△EDF,使點B的對應點為點D,點A對應點為點E.
(1)畫出△EDF;
(2)線段BD與AE有何關系? ____________;
(3)連接CD、BD,則四邊形ABDC的面積為_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com