【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OA1A2的直角邊OA1y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個等腰直角三角形OA2A3,以OA3為直角邊作第三個等腰直角三角形OA3A4,,依此規(guī)律,得到等腰直角三角形OA2017A2018,則點A2017的坐標(biāo)為______

【答案】0 )或(0,21008).

【解析】解:等腰直角三角形OA1A2的直角邊OA1y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個等腰直角三角形OA2A3,以OA3為直角邊作第三個等腰直角三角形OA3A4,OA1=1,OA2=,OA3=2,OA2017=2016,A1、A2A3、,每8個一循環(huán),再回到y軸的正半軸,2017÷8=252…1,A2017y軸上OA2017=2016,A2017的坐標(biāo)為(0,( 2016)即(0,21008).

故答案為:(0, )或(0,21008).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算:①13+(﹣22)﹣(﹣2

②﹣4

③(×(﹣48

④﹣14﹣(1[23+(﹣32]

2)化簡:①(3mn2m2+(﹣4m25mn

②﹣(2a3b)﹣2(﹣a+4b1

3)先化簡再求值:7x2y22x2y3xy2-4x2yxy2),其中x=﹣2,y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙、丙、丁四位同學(xué)給出了四種表示該長方形面積的多項式:

①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你認(rèn)為其中正確的有( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ADBC,ABBC,CDDE,CD=ED,AD=2,BC=3,則ADE的面積為( )

A.1 B.2 C.5 D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=(k為常數(shù)).

(1)若點P1,y1)和點P2(﹣,y2)是該反比例函數(shù)圖象上的兩點,試?yán)梅幢壤瘮?shù)的性質(zhì)比較y1y2的大;

(2)設(shè)點P(m,n)(m>0)是其圖象上的一點,過點PPMx軸于點M.若tanPOM=2,PO=(O為坐標(biāo)原點),求k的值,并直接寫出不等式kx+>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,隨著電子商務(wù)的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長,根據(jù)企業(yè)財報,某網(wǎng)站得到如下統(tǒng)計表:

(1)請選擇適當(dāng)?shù)慕y(tǒng)計圖,描述2014﹣2017年“電商包裹件”占當(dāng)年“快遞件”總量的百分比(精確到1%);

(2)若2018年“快遞件”總量將達(dá)到675億件,請估計其中“電商包裹件”約為多少億件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點O為直線AB上的一點,∠BOC=∠DOE90°

1)如圖1,當(dāng)射線OC、射線OD在直線AB的兩側(cè)時,請回答結(jié)論并說明理由;

COD和∠BOE相等嗎?

BOD和∠COE有什么關(guān)系?

2)如圖2,當(dāng)射線OC、射線OD在直線AB的同側(cè)時,請直接回答;

COD和∠BOE相等嗎?

第(1)題中的∠BOD和∠COE的關(guān)系還成立嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=2,動點DB開始沿BC向點C運動,到達(dá)點C后停止運動,將△ABD繞點A旋轉(zhuǎn)后得到△ACE,則下列說法中,正確的是( 。

①DE的最小值為1;②ADCE的面積是不變的;在整個運動過程中,點E運動的路程為2;④在整個運動過程中,△ADE的周長先變小后變大.

A. ①③④ B. ①②③ C. ②③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:三角形ABC,A=90,AB=ACDBC的中點,如圖,EF分別是AB,AC上的點,且BE=AF,求證:DEF為等腰直角三角形.

查看答案和解析>>

同步練習(xí)冊答案