【題目】如圖,在矩形OABC中,OA5,AB4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在邊OA上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.

1)求OE的長及經(jīng)過O,D,C三點拋物線的解析式;

2)一動點P從點C出發(fā),沿CB以每秒2個單位長度的速度向點B運動,同時動點QE點出發(fā),沿EC以每秒1個單位長度的速度向點C運動,當(dāng)點P到達點B時,兩點同時停止運動,設(shè)運動時間為t秒,當(dāng)t為何值時,DPDQ;

3)若點N在(1)中拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使MN,CE為頂點的四邊形是平行四邊形?若存在,請求出M點坐標(biāo);若不存在,請說明理由.

【答案】1OE3;yx2+x;(2t;(3)存在滿足條件的點M,其坐標(biāo)為(2,16)或(﹣616)或(﹣2,﹣).

【解析】

(1)由折疊的性質(zhì)可求得CE、CO,在Rt△COE中,由勾股定理可求得OE,設(shè)AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D點坐標(biāo),結(jié)合C、O兩點,利用待定系數(shù)法可求得拋物線解析式;

(2)用t表示出CP、BP的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;

(3)可設(shè)出N點坐標(biāo),分三種情況①EN為對角線,②EM為對角線,③EC為對角線,根據(jù)平行四邊形的性質(zhì)可求得對角線的交點橫坐標(biāo),從而可求得M點的橫坐標(biāo),再代入拋物線解析式可求得M點的坐標(biāo).

1)∵CECB5COAB4,

∴在RtCOE中,OE3,

設(shè)ADm,則DEBD4m,

OE3

AE532,

RtADE中,由勾股定理可得AD2+AE2DE2,即m2+22=(4m2,解得m,

D(﹣,﹣5),

C(﹣40),O0,0),

∴設(shè)過OD、C三點的拋物線為yaxx+4),

∴﹣5=﹣a(﹣+4),解得a,

∴拋物線解析式為yxx+4)=x2+x;

2)∵CP2t

BP52t,

BDDE,

BDDE,

RtDBPRtDEQ中,

,

RtDBPRtDEQHL),

BPEQ

52tt,

t;

3)∵拋物線的對稱軸為直線x=﹣2,

∴設(shè)N(﹣2,n),

又由題意可知C(﹣40),E0,﹣3),

設(shè)Mmy),

①當(dāng)EN為對角線,即四邊形ECNM是平行四邊形時,

則線段EN的中點橫坐標(biāo)為,線段CM中點橫坐標(biāo)為,

ENCM互相平分,

=﹣1,解得m2,

M點在拋物線上,

y×22+×216,

M2,16);

②當(dāng)EM為對角線,即四邊形ECMN是平行四邊形時,

則線段EM的中點橫坐標(biāo)為,線段CN中點橫坐標(biāo)為,

EM,CN互相平分,

=﹣3,解得m=﹣6,

又∵M點在拋物線上,

y×(﹣62+×(﹣6)=16,

M(﹣6,16);

③當(dāng)CE為對角線,即四邊形EMCN是平行四邊形時,

M為拋物線的頂點,即M(﹣2,﹣).

綜上可知,存在滿足條件的點M,其坐標(biāo)為(2,16)或(﹣6,16)或(﹣2,﹣).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017江西省,第12題,3分)已知點A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點D的邊AC上,將邊OA沿OD折疊,點A的對應(yīng)邊為A'.若點A'到矩形較長兩對邊的距離之比為1:3,則點A'的坐標(biāo)為______________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,連結(jié)AC,現(xiàn)有一寬度為1,且長與y軸平行的矩形沿x軸方向平移,交直線AC于點DE,△ODE周長的最小值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BABC,以AB為直徑的⊙O分別交ACBC于點D、E,BC的延長線于⊙O的切線AF交于點F

1)求證:∠ABC2CAF;

2)若AC2,CEEB14,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字,,,如圖,正方形頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖起跳,第一次擲得,就順時針連續(xù)跳個邊長,落到圈;若第二次擲得,就從開始順時針連續(xù)跳個邊長,落到圈;設(shè)游戲者從圈起跳.

)嘉嘉隨機擲一次骰子,求落回到圈的概率

淇淇隨機擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)號樓對外銷售,已知號樓某單元共層,一樓為商鋪,只租不售,二樓以上價格如下:第層售價為/,從第層起每上升一層,每平方米的售價提高元,反之每降一層,每平方米的售價降低元,已知該單元每套的面積均為

優(yōu)惠活動

活動一:若一次性付清所有房款,降價,另免年物業(yè)費共元.

活動二:若購買者一次性付清所有房款,降價,無贈送.

1)請在下表中,補充完整售價(/)與樓層(取正整數(shù))之間的的數(shù)關(guān)系式.

樓層()

售價(/)

不售

2)某客戶想購買該單元第層的一套樓房,若他一次性付清購房款,可以參加如圖優(yōu)惠活動.請你幫助他分析哪種優(yōu)惠方案更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》,如圖所示的程序框圖,當(dāng)輸入x的值是17時,根據(jù)程序,第一次計算輸出的結(jié)果是10,第二次計算輸出的結(jié)果是5,……,這樣下去第2019次計算輸出的結(jié)果是(

A.-2B.-1C.-8D.-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點的拋物線軸交于另一點,在第一象限內(nèi)與直線交于點

1)求這條拋物線的解析式;

2)在第四象限內(nèi)的拋物線上有一點,滿足以,為頂點的三角形的面積為1,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強.為了有效地避免交叉感染,需要采取以下防護措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹慎吃.某公司為了解員工對防護措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網(wǎng)上問卷調(diào)查的方式進行了隨機抽樣調(diào)查(每名員工必須且只能選擇一項),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.

請你根據(jù)上面的信息,解答下列問題

1)本次共調(diào)查了_______名員工,條形統(tǒng)計圖中________

2)若該公司共有員工1000名,請你估計不了解防護措施的人數(shù);

3)在調(diào)查中,發(fā)現(xiàn)有4名員工對防護措施很了解,其中有3名男員工、1名女員工.若準備從他們中隨機抽取2名,讓其在公司群內(nèi)普及防護措施,求恰好抽中一男一女的概率.

查看答案和解析>>

同步練習(xí)冊答案