精英家教網 > 初中數學 > 題目詳情

【題目】如果兩個角之差的絕對值等于60°,則稱這兩個角互為互優(yōu)角(本題中所有角都是指大于且小于180°的角)

(1)若∠1和∠2互為互優(yōu)角,當∠1=90°時,則∠2=_____°

(2)如圖1,將一長方形紙片沿著EP對折(P在線段BC上,點E在線段AB)使點B落在點若與互為互優(yōu)角,求∠BPE的度數;

(3)再將紙片沿著PF對折(F在線段CDAD)使點C落在C′

①如圖2,若點E、C′、P在同一直線上,且互為互優(yōu)角,求∠EPF的度數(對折時,線段落在∠EPF內部);

②若∠B′PC′與∠EPF互為互優(yōu)角,則∠BPE求∠CPF應滿足什么樣的數量關系(直接寫出結果即可)

【答案】130°或150;(240°或80°;(3)①∠EPF=80°,EPF=40°.

【解析】

1)按照“互優(yōu)角的定義,求出∠2即可;

2)根據∠EPB'+EPB'+EPB'+60°=180°解答即可;

3)①由∠BPE+EPB'+B'PF+FPC=180°解答即可;

②∠B'PC'=FPC,∠EPB=EPF,∠EPB+EPF+FPC=180°解答即可.

解:(1)∵∠1和∠2互為“互優(yōu)角

|1-2|=60°

∠190°

90°-2=60°或90°-2=-60°

解得:∠2=30°或150°

故答案為:30°或150

2)∵∠EPB'與∠B'PC互為“互優(yōu)角”

當∠EPB'<B'PC時,∠B'PC-EPB'=60°

∴∠B'PC=EPB'+60°

∵△BEP翻折得△B'EP

∴∠EPB=EPB'

∵∠EPB+EPB'+B'PC=180°

∴∠EPB'+EPB'+EPB'+60°=180

解得:∠EPB'=40°

當∠EPB'>B'PC時,∠B'PC-EPB'=60°,可得∠EPB'=80°

故∠EPB'的值為40°或80°;

3)①由題意得:點E、C、P在同一直線上,

∵∠B'PC'與∠EPF互為“互優(yōu)角

∴∠BPC<EPF,∠EPF-B'PC=60°=B'PF

∵∠BPE=B'PC=EPF-60°,∠FPC=EPF

∴∠BPE+EPB'+B'PF+FPC=180°

∴∠EPF-60°+EPF+EPF=180°,得∠EPF=80°;

②由題意得:點E、C、P在同一直線上,

∵∠B'PC'與∠EPF互為“互優(yōu)角

∴∠B'P'C-EPF=60°,得∠B'P'C=60°+EPF

∵∠B'PC'=FPC,∠EPB=EPF,∠EPB+EPF+FPC=180°

2EPF+60°+EPF=180°,解得∠EPF=40°

故∠EPF的度數為40°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠A48°,∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線相交于點A2,得∠A2……;∠An1BC與∠An1CD的平分線交于點An,要使∠An的度數為整數,則n的最大值為(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發(fā)向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和 個單位長度/秒,設運動時間為t秒,以點A為頂點的拋物線經過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.

(1)求點A,點B的坐標;
(2)用含t的代數式分別表示EF和AF的長;
(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某手機經銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2臺甲型號手機和1臺乙型號手機,共需要資金2800元;若購進3臺甲型號手機和2臺乙型號手機,共需要資金4600元.

1)求甲、乙型號手機每臺進價為多少元?

2)該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于18萬元且不少于174萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?請寫出進貨方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在數軸上,點M、N分別表示數mn 則點M,N 之間的距離為|m-n|.已知點AB,CD在數軸上分別表示的數為a,bc,d.且|a-c|=|b-c|=|d-a|=1 (a≠b),則線段BD的長度為(

A.3.5B.0.5C.3.50.5D.4.50.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校體育社團在校內開展你最喜歡的體育項目是什么?四項選一項調查,對九年級學生隨機抽樣,并將收集的數據繪制成如下兩幅不完整的統(tǒng)計圖.請結合統(tǒng)計圖,解答下列問題:

(1)本次抽樣人數有________人;

(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)該校九年級共有600名學生,估計九年級最喜歡跳繩項目的學生有________人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校對“學生在學校拿手機影響學習的情況”進行了調查,隨機調查了部分學生,對此問題的看法分為三種情況:沒有影響、影響不大、影響很大,并將調查結果繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據統(tǒng)計圖表提供的信息,解答下列問題:

人數統(tǒng)計表如下:

看法

沒有影響

影響不大

影響很大

學生人數()

20

30

a

1)統(tǒng)計表中的a    ;

2)請根據表中的數據,談談你的看法(不少于2條)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請在圖中標明旋轉中心P的位置并寫出其坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,直線,點為平面上一點,連接

1)如圖1,點在直線之間,當,時,求

2)如圖2,點在直線之間左側,的角平分線相交于點,寫出之間的數量關系,并說明理由.

3)如圖3,點落在下方,的角平分線相交于點,有何數量關系?并說明理由.

查看答案和解析>>

同步練習冊答案