【題目】線段AB=12cm,點(diǎn)C在線段AB上,點(diǎn)D、E分別是AC和BC的中點(diǎn).
(1)若點(diǎn)C恰好是AB中點(diǎn),求DE的長.
(2)若AC=4cm,求DE的長.
(3)若點(diǎn)C為線段AB上的一個動點(diǎn)(點(diǎn)C不與A,B重合),求DE的長.
【答案】(1)DE的長為6cm;(2)DE=6cm;(3)DE=6cm.
【解析】
(1)根據(jù)線段中點(diǎn)的性質(zhì)計算即可;
(2)根據(jù)線段中點(diǎn)的性質(zhì)和給出的數(shù)據(jù),結(jié)合圖形計算;
(3)同(1)的解法相同;
由AB=12cm,點(diǎn)D. E分別是AC和BC的中點(diǎn),即可推出DE=12(AC+BC)=12AB=6cm;由AC=4cm,AB=12cm,即可推出BC=8cm,然后根據(jù)點(diǎn)D. E分別是AC和BC的中點(diǎn),即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的長度;
(1)∵點(diǎn)D是AC中點(diǎn),
∴AC=2AD=6,
又∵D、E分別是AC和BC的中點(diǎn),
∴DE=DC+CE=AC+BC=AB=6;
故DE的長為6cm;
(2)∵AB=12cm,AC=4cm,
∴BC=8cm,
∵點(diǎn)D、E分別是AC和BC的中點(diǎn),
∴DC=AC=2,CE=BC=4,
∴DE=6cm;
(3)∵DE=DC+CE=AC+BC=AB
而AB=12,
∴DE=6cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6cm,動點(diǎn)P從A點(diǎn)出發(fā),在正方形的邊上由A→B→C→D運(yùn)動,設(shè)運(yùn)動的時間為t(s),△APD的面積為S(cm2),S與t的函數(shù)圖象如圖所示
(1)求點(diǎn)P在BC上運(yùn)動的時間范圍;
(2)當(dāng)t為何值時,△APD的面積為10cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)P為斜邊OB上的一動點(diǎn),則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x、y的二元一次方程組 的解都為正數(shù)。
(1)求a的取值范圍;
(2)化簡|a+1||a1|;
(3)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求a的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過點(diǎn)C(2,0)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CD與y軸相交于點(diǎn)E.
(1)直線CD的函數(shù)表達(dá)式為______;(直接寫出結(jié)果)
(2)在x軸上求一點(diǎn)P使△PAD為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
(3)若點(diǎn)Q為線段DE上的一個動點(diǎn),連接BQ.點(diǎn)Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的y軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B(0,-4),若點(diǎn)E在線段AB上,OE⊥OF,且OE=OF,連接AF.
(1)猜想線段AF與BE之間的關(guān)系,并證明;
(2)過點(diǎn)O作OM⊥EF垂足為D,OM分別交AF、BA的延長線于點(diǎn)C、M若BE=,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一矩形紙片ABCD,AB=8,AD=17,將此矩形紙片折疊,使頂點(diǎn)A落在BC邊的A′處,折痕所在直線同時經(jīng)過邊AB、AD(包括端點(diǎn)),設(shè)BA′=x,則x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解填空,并在括號內(nèi)填注理由.如圖,已知AB//CD,M,N分別交AB,CD于點(diǎn)E,F,,求證:EP//FQ.
證明:AB//CD(_________),
(__________).
又(_____________)
∴(___________)
即:( )
∴EP//______.(________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com