【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過(guò)點(diǎn)C(2,0)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CD與y軸相交于點(diǎn)E.
(1)直線CD的函數(shù)表達(dá)式為______;(直接寫出結(jié)果)
(2)在x軸上求一點(diǎn)P使△PAD為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
(3)若點(diǎn)Q為線段DE上的一個(gè)動(dòng)點(diǎn),連接BQ.點(diǎn)Q是否存在某個(gè)位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的y軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=3x-6;(2)點(diǎn)P的坐標(biāo)為(,0)或(6,0)或(-14,0)或(12,0);(3)存在,點(diǎn)Q的坐標(biāo)為(,)
【解析】
(1)求出D的坐標(biāo),即可求解;
(2)分PA=PD、當(dāng)PA=AD、DP=AD三種情況,分別求解即可;
(3)利用BD=BD′,DQ=D′Q,即可求解.
解:(1)將點(diǎn)D的橫坐標(biāo)為4代入一次函數(shù)y=x+3表達(dá)式,解得:y=6,即點(diǎn)D的坐標(biāo)為(4,6),
將點(diǎn)C、D的坐標(biāo)代入一次函數(shù)表達(dá)式y=kx+b得:
解得:
故答案為:y=3x-6;
(2)①當(dāng)PA=PD時(shí),
點(diǎn)B是AD的中點(diǎn),
故:過(guò)點(diǎn)B且垂直于AD的直線方程為:y=-x+3,
令y=0,則x=,
即點(diǎn)P的坐標(biāo)為(,0);
②當(dāng)PA=AD時(shí),
AD= =10,
故點(diǎn)P的坐標(biāo)為(6,0)或(-14,0);
③當(dāng)DP=AD時(shí),
同理可得:點(diǎn)P的坐標(biāo)為(12,0);
故點(diǎn)P的坐標(biāo)為(,0)或(6,0)或(-14,0)或(12,0);
(3)設(shè)翻轉(zhuǎn)后點(diǎn)D落在y軸上的點(diǎn)為D′,設(shè)點(diǎn)Q的坐標(biāo)為(x,3x-6),
則:BD=BD′,DQ=D′Q,
BD′=BD= =5,故點(diǎn)D′的坐標(biāo)為(0,-2),
DQ2=D′Q2,即:x2+(3x-6+2)2=(x-4)2+(3x-6-6)2,
解得:x=,
故點(diǎn)Q的坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, BAD CAE 90 , AB AD , AE AC , ABD ADB ACE AEC 45 ,AF CF ,垂足為 F .
(1)若 AC 10 ,求四邊形 ABCD 的面積;
(2)求證: CE 2 AF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:O是坐標(biāo)原點(diǎn),P(m,n)(m>0)是函數(shù)y=(k>0)上的點(diǎn),過(guò)點(diǎn)P作直線PA⊥OP于P,直線PA與x軸的正半軸交于點(diǎn)A(a,0)(a>m).設(shè)△OPA的面積為s,且s=1+.
(1)當(dāng)n=1時(shí),求點(diǎn)A的坐標(biāo);
(2)若OP=AP,求k的值;
(3)設(shè)n是小于20的整數(shù),且k≠,求OP2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△OAB是⊙O的內(nèi)接三角形,∠AOB=120°,過(guò)O作OE⊥AB于點(diǎn)E,交⊙O于點(diǎn)C,延長(zhǎng)OB至點(diǎn)D,使OB=BD,連CD.
(1)求證: CD是⊙O切線;
(2)若F為OE上一點(diǎn),BF的延長(zhǎng)線交⊙O于G,連OG,,CD=6,求S△GOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】線段AB=12cm,點(diǎn)C在線段AB上,點(diǎn)D、E分別是AC和BC的中點(diǎn).
(1)若點(diǎn)C恰好是AB中點(diǎn),求DE的長(zhǎng).
(2)若AC=4cm,求DE的長(zhǎng).
(3)若點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)C不與A,B重合),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在解方程時(shí)運(yùn)用了下面的方法:由,又由可得,將這兩式相加可得,將兩邊平方可解得=-1,經(jīng)檢驗(yàn)=-1是原方程的解.
請(qǐng)你參考小明的方法,解下列方程:
(1)
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將相同的矩形卡片,按如圖方式擺放在一個(gè)直角上,每個(gè)矩形卡片長(zhǎng)為2,寬為1,依此類推,擺放2014個(gè)時(shí),實(shí)線部分長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)幾何體的三視圖.
(1)寫出該幾何體的名稱,并根據(jù)所示數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積;
(2)如果一只螞蟻要從這個(gè)幾何體中的點(diǎn)B出發(fā),沿表面爬到AC的中點(diǎn)D,請(qǐng)你求出這個(gè)線路的最短路程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com