【題目】如圖,有一矩形紙片ABCD,AB=8,AD=17,將此矩形紙片折疊,使頂點(diǎn)A落在BC邊的A′處,折痕所在直線同時(shí)經(jīng)過邊AB、AD(包括端點(diǎn)),設(shè)BA′=x,則x的取值范圍是 .
【答案】
【解析】
試題作出圖形,根據(jù)矩形的對邊相等可得BC=AD,CD=AB,當(dāng)折痕經(jīng)過點(diǎn)D時(shí),根據(jù)翻折的性質(zhì)可得A′D=AD,利用勾股定理列式求出A′C,再求出BA′;當(dāng)折痕經(jīng)過點(diǎn)B時(shí),根據(jù)翻折的性質(zhì)可得BA′=AB,此兩種情況為BA′的最小值與最大值的情況,然后寫出x的取值范圍即可.
試題解析:
如圖,∵四邊形ABCD是矩形,AB=8,AD=17,
∴BC=AD=17,CD=AB=8,
①當(dāng)折痕經(jīng)過點(diǎn)D時(shí),
由翻折的性質(zhì)得,A′D=AD=17,在Rt△A′CD中,A′C=15 ∴BA′=BC-A′C=17-15=2;
②當(dāng)折痕經(jīng)過點(diǎn)B時(shí),由翻折的性質(zhì)得,BA′=AB=8,
∴x的取值范圍是2≤x≤8.
故答案為:2≤x≤8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于點(diǎn)D,DE⊥AD且與AC的延長線交于點(diǎn)E.
(1)求證:DC=DE;
(2)若tan∠CAB=,AB=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段AB=12cm,點(diǎn)C在線段AB上,點(diǎn)D、E分別是AC和BC的中點(diǎn).
(1)若點(diǎn)C恰好是AB中點(diǎn),求DE的長.
(2)若AC=4cm,求DE的長.
(3)若點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)C不與A,B重合),求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將相同的矩形卡片,按如圖方式擺放在一個(gè)直角上,每個(gè)矩形卡片長為2,寬為1,依此類推,擺放2014個(gè)時(shí),實(shí)線部分長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC的中點(diǎn),過點(diǎn)O的直線分別與AB,CD交于點(diǎn)E,F,連接BF交AC于點(diǎn)M,連接DE,BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB∶OE=3∶2.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的曲線是函數(shù)y= (m為常數(shù))圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與正比例函數(shù)y=2x的圖象在第一象限的交點(diǎn)為A(2,n),求點(diǎn)A的坐標(biāo)及反比例
函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將若干枝鉛筆分給甲、乙兩個(gè)班級,甲班有一人分到6枝,其余的每人都分到13枝,乙班有一人分到5枝,其余的每人都分到10枝.如果分到兩個(gè)班級的鉛筆數(shù)目相同,并且大于100而不超過200那么甲、乙兩個(gè)班各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市舉行“第十七屆中小學(xué)生書法大賽”作品比賽,已知每幅參賽作品成績記為,組委會從1000幅書法作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計(jì)了它們的成績,并繪制成如下統(tǒng)計(jì)圖表.
分?jǐn)?shù)段 | 頻數(shù) | 百分比 |
38 | 0.38 | |
| 0.32 | |
|
| |
10 | 0.1 | |
合計(jì) | 100 | 1 |
書法作品比賽成績頻數(shù)直方圖
根據(jù)上述信息,解答下列問題:
(1)請你把表中空白處的數(shù)據(jù)填寫完整.
(2)請補(bǔ)全書法作品比賽成績頻數(shù)直方圖.
(3)若80分(含80分)以上的書法作品將被評為等級獎(jiǎng),試估計(jì)全市獲得等級的幅數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com