【題目】為了解學(xué)生對(duì)各種球類運(yùn)動(dòng)的喜愛程度,小明采取隨機(jī)抽樣的方法對(duì)他所在學(xué)校的部分學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一種項(xiàng)目),對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了下面的統(tǒng)計(jì)圖(1)和圖(2).

1)此次被調(diào)查的學(xué)生共有___人,m_____;

2)求喜歡“乒乓球”的學(xué)生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校有2000名學(xué)生,估計(jì)全校喜歡“足球”的學(xué)生大約有多少人?

【答案】150,20;(25人,圖見解析;(3400

【解析】

1)利用喜歡籃球的人數(shù)與所占總體的百分比可得總?cè)藬?shù),利用喜歡足球的人數(shù)占總體的百分比可得的值,

2)利用總?cè)藬?shù)與各部分的人數(shù)差可得答案,依據(jù)答案補(bǔ)全條形統(tǒng)計(jì)圖即可,

3)利用樣本中喜歡足球所占的百分比乘以總?cè)藬?shù)即可得到答案.

解:(1)由(人),所以被調(diào)查的學(xué)生共有50人,

所以

故答案為:50,20

2)喜歡乒乓球的有:502010155(人)

如圖所示:

3)喜歡足球的大約有:2000400(人)

答:估計(jì)全校喜歡“足球”的學(xué)生人數(shù)為400人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究: 如圖,直線的表達(dá)式為,與軸交于點(diǎn),直線軸于點(diǎn),,交于點(diǎn),過點(diǎn)軸于點(diǎn),

1)求點(diǎn)的坐標(biāo);

2)求直線的表達(dá)式;

3)求的值;

4)在軸上是否存在點(diǎn),使得?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形AOCB的頂點(diǎn)B在反比例函數(shù),x0)的圖像上,且AB=3BC=8.若動(dòng)點(diǎn)EA開始沿ABB以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)FB開始沿BCC以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)求反比例函數(shù)的表達(dá)式.

2)當(dāng)t=1時(shí),在y軸上是否存在點(diǎn)D,使△DEF的周長(zhǎng)最?若存在,請(qǐng)求出△DEF的周長(zhǎng)最小值;若不存在,請(qǐng)說明理由.

3)在雙曲線上是否存在一點(diǎn)M,使以點(diǎn)B、EF、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出滿足條件t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=ADBC=CD,則把這樣的四邊形稱之為箏形.

(1)寫出箏形的兩個(gè)性質(zhì)(定義除外)

;②

(2)如圖(2),在平行四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,且AE=AF,∠AEC=AFC.求證:四邊形AECF是箏形.

(3)如圖(3),在箏形ABCD中,AB=AD=26,BC=DC=25AC=17,求箏形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201923日至2019220日,第一屆成都金沙太陽(yáng)節(jié)在金沙遺址博物館成功舉辦,用世界文明展覽,主題燈展,園林花藝,美食演繹等一系列文化活動(dòng),與瑪雅這一著名的中美洲文明結(jié)下不解之緣,為成都人打造了一個(gè)博物館里的文化年”.春節(jié)當(dāng)天,小杰于下午點(diǎn)乘車從家出發(fā),當(dāng)天按原路返回.如圖,是小杰出行的過程中,他距家的距離(千米)與他離家的時(shí)間(小時(shí))之間的圖像.根據(jù)圖像,完成下面的問題:

1)小杰家距金沙遺址博物館 千米,他乘車去金沙遺址博物館的速度是 千米/小時(shí);

2)已知晚上點(diǎn)時(shí),小杰距家千米,請(qǐng)通過計(jì)算說明他何時(shí)才能回到家?

3)請(qǐng)直接寫出小杰回家過程中的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型超市從生產(chǎn)基地購(gòu)進(jìn)一批水果,運(yùn)輸過程中質(zhì)量損失10%,假設(shè)不計(jì)超市其他費(fèi)用,如果超市要想至少獲得20%的利潤(rùn),那么這種水果的售價(jià)在進(jìn)價(jià)的基礎(chǔ)上應(yīng)至少提高【 】

A.40% B.33.4% C.33.3% D.30%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(【材料閱讀】閱讀下列一段文字,然后回答下列問題.

已知平面內(nèi)兩點(diǎn)Mx1,y1)、Nx2,y2),則這兩點(diǎn)間的距離可用下列公式計(jì)算:

MN=

例如:已知P3,1)、Q1,2),則這兩點(diǎn)間的距離PQ==

直接應(yīng)用

1)已知A2,-3)、B-4,5),試求AB兩點(diǎn)間的距離;

2)已知ABC的頂點(diǎn)坐標(biāo)分別為A04)、B﹣12)、C42),你能判定ABC的形狀嗎?請(qǐng)說明理由.

深度應(yīng)用

3如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣4的圖象與x軸相交于兩點(diǎn)A、B,(點(diǎn)A在點(diǎn)B的左邊)

求點(diǎn)A、B的坐標(biāo);

設(shè)點(diǎn)Pm,n)是以點(diǎn)C3,4)為圓心、1為半徑的圓上一動(dòng)點(diǎn),求PA2+PB2的最大值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(模型建立)

1)如圖1,等腰RtABC中,∠ACB90°,CBCA,直線ED經(jīng)過點(diǎn)C,過點(diǎn)AADED于點(diǎn)D,過點(diǎn)BBEED于點(diǎn)E,求證:△BEC≌△CDA;

(模型應(yīng)用)

2)如圖2,已知直線l1yx+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線l2;求直線l2的函數(shù)表達(dá)式;

3)如圖3,平面直角坐標(biāo)系內(nèi)有一點(diǎn)B3,﹣4),過點(diǎn)BBAx軸于點(diǎn)A、BCy軸于點(diǎn)C,點(diǎn)P是線段AB上的動(dòng)點(diǎn),點(diǎn)D是直線y=﹣2x+1上的動(dòng)點(diǎn)且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點(diǎn)D的坐標(biāo),若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張背面相同的紙牌A,BC,D,其正面分別劃有四個(gè)不同的幾何圖形(如圖).小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張.

1)用樹狀圖(或列表法)表示兩次模牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);

2)求摸出兩張牌面圖形既是中心對(duì)稱圖形又是軸對(duì)稱圖形的紙牌的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案