【題目】如圖是反比例函數(shù)的圖象的一個分支.

比例系數(shù)的值是________;

寫出該圖象的另一個分支上的個點的坐標:________、________;

在什么范圍取值時,是小于的正數(shù)?

如果自變量取值范圍為,求的取值范圍.

【答案】(1)12;(2)(﹣2,﹣6),(﹣3,﹣4);(3)x>4;(4)y的取值范圍是4≤y≤6.

【解析】

(1)根據(jù)圖像過點(2,6),即可得出k的值;(2)根據(jù)(1)中所求解析式,即可得出圖像上點的坐標;(3)根據(jù)y=<3求出x的取值范圍即可;(4)根據(jù)x=2時,y=6,當x=3時,y=4,得出y的取值范圍即可.

(1)∵圖像過點(2,6),∴k=xy=12;

(2)(﹣2,﹣6),(﹣3,﹣4).(答案不唯一,符合xy=12且在第三象限的點即可.);

(3)當y=<3時,則x>4;

(4)當x=2時,y=6,當x=3時,y=4,故2≤x≤3時,y的取值范圍是4≤y≤6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】教師辦公室有一種可以自動加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10 ℃,待加熱到100 ℃,飲水機自動停止加熱,水溫開始下降,水溫y()和通電時間x(min)成反比例函數(shù)關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫均為20 ℃,接通電源后,水溫y()和通電時間x(min)之間的關系如圖所示,回答下列問題:

(1)分別求出當0x88xa時,yx之間的函數(shù)關系式;

(2)求出圖中a的值;

(3)李老師這天早上730將飲水機電源打開,若他想在810上課前喝到不低于40 ℃的開水,則他需要在什么時間段內(nèi)接水?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐﹣﹣旋轉(zhuǎn)中的數(shù)學

問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉(zhuǎn)中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:

觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關系是______;

操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過程中,(1)中的結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由;

操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉(zhuǎn)至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】―拋物線與x軸的交點是A(2,0),B(1,0),且經(jīng)過點C(2,8)

(1)求該拋物線的解析式;

(2)求該拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】針對下列圖象李明同學說到:圖①可能是;圖②可能是;圖③可能是;圖④可能是

你認為其中必定正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本小題滿分11分如圖,已知拋物線的頂點D的坐標為(1),且與x軸交于A、B兩點,與y軸交于C點,A點的坐標為(4,0).P點是拋物線上的一個動點,且橫坐標為m

(l)求拋物線所對應的二次函數(shù)的表達式;

(2)若動點P滿足PAO不大于45°,求P點的橫坐標m的取值范圍;

(3)P點的橫坐標時,過p點作y軸的垂線PQ,垂足為Q.問:是否存在P點,使QPO=BCO?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖,點,,在同一條直線上,連結(jié)DC

1)請判斷的位置關系,并證明

2)若,求的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中函數(shù) y kx y 的圖象交于 A、B 兩點 A y 軸的垂線,交函數(shù)的圖象于點 C,連接 BC,則ABC 的面積為(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,,平分,

(1);

(2)

查看答案和解析>>

同步練習冊答案