【題目】針對下列圖象李明同學(xué)說到:圖①可能是;圖②可能是;圖③可能是;圖④可能是
你認(rèn)為其中必定正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】B
【解析】
分別求出各二次函數(shù)與y軸的交點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo),然后進(jìn)行判斷即可.
解:①y=-x2+4x=-(x-2)2+4與y軸的交點(diǎn)坐標(biāo)為(0,0),
頂點(diǎn)坐標(biāo)為(2,4),圖象正確;
圖②y=(x-2)2-1頂點(diǎn)坐標(biāo)是(2,-1),圖象錯(cuò)誤;
圖③y=-3x2-4x+1=-3(x+)2+與y軸的交點(diǎn)坐標(biāo)為(0,1),
頂點(diǎn)坐標(biāo)為(-),圖象錯(cuò)誤;
圖④y=x2-4x+1=(x-2)2-3,與y軸的交點(diǎn)坐標(biāo)為(0,1),
頂點(diǎn)坐標(biāo)為(2,-3),圖象正確,
所以,正確的有①④共2個(gè).
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的“文明出行”知識競賽中,8(1)和8(2)班參賽人數(shù)相同,成績分為A、B、C三個(gè)等級,其中相應(yīng)等級的得分依次記為A級100分、B級90分、C級80分,達(dá)到B級以上(含B級)為優(yōu)秀,其中8(2)班有2人達(dá)到A級,將兩個(gè)班的成績整理并繪制成如下的統(tǒng)計(jì)圖,請解答下列問題:
(1)求各班參賽人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)此次競賽中8(2)班成績?yōu)?/span>C級的人數(shù)為_______人;
(3)小明同學(xué)根據(jù)以上信息制作了如下統(tǒng)計(jì)表:
平均數(shù)(分) | 中位數(shù)(分) | 方差 | |
8(1)班 | m | 90 | n |
8(2)班 | 91 | 90 | 29 |
請分別求出m和n的值,并從優(yōu)秀率和穩(wěn)定性方面比較兩個(gè)班的成績;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某旅游景點(diǎn)的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現(xiàn)在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個(gè)臺階的高超過15cm且不足22cm時(shí),按一個(gè)臺階計(jì)算.可能用到的數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
(1)問題發(fā)現(xiàn)
如圖1,和均為等邊三角形,點(diǎn)在同一直線上,連接.請寫出的度數(shù)及線段之間的數(shù)量關(guān)系,并說明理由.
(2)類比探究
如圖2,和均為等腰直角三角形,,點(diǎn)在同一直線上,為中邊上的高,連接.
填空:①的度數(shù)為____________;
②線段之間的數(shù)量關(guān)系為_______________________________.
(3)拓展延伸
在(2)的條件下,若,則四邊形的面積為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是反比例函數(shù)的圖象的一個(gè)分支.
比例系數(shù)的值是________;
寫出該圖象的另一個(gè)分支上的個(gè)點(diǎn)的坐標(biāo):________、________;
當(dāng)在什么范圍取值時(shí),是小于的正數(shù)?
如果自變量取值范圍為,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形,其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).?dāng)?shù)學(xué)家還發(fā)現(xiàn):在一個(gè)直角三角形中,兩條直角邊長的平方和等于斜邊長的平方。即如果一個(gè)直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么。
(1)直接填空:如圖①,若a=3,b=4,則c= ;若,,則直角三角形的面積是 ______ 。
(2)觀察圖②,其中兩個(gè)相同的直角三角形邊AE、EB在一條直線上,請利用幾何圖形的之間的面積關(guān)系,試說明。
(3)如圖③所示,折疊長方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為9的等邊三角形,是邊上一動(dòng)點(diǎn),由向運(yùn)動(dòng)(與、不重合),是延長線上一動(dòng)點(diǎn),與點(diǎn)同時(shí)以相同的速度由向延長線方向運(yùn)動(dòng)(不與重合),過作于,連接交于
(1)若時(shí),求的長
(2)當(dāng)點(diǎn),運(yùn)動(dòng)時(shí),線段與線段是否相等?請說明理由
(3)在運(yùn)動(dòng)過程中線段的長是否發(fā)生變化?如果不變,求出線段的長;如果發(fā)生變化,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B 兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.
(1)求AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);
(2)甲、乙兩船分別從A,B兩港口同時(shí)出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時(shí)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com