【題目】如圖,在△ABC中,∠BAC90°,點EBC邊上,且CACE,過AC,E三點的⊙OAB于另一點F,作直徑AD,連結(jié)DE并延長交AB于點G,連結(jié)CD,CF

1)求證:四邊形DCFG是平行四邊形;(2)當BE4,CDAB時,求⊙O的直徑長.

【答案】1)見解析;(2的直徑長為.

【解析】

1)連接AE,由∠BAC90°,得到CF是⊙O的直徑,根據(jù)圓周角定理得到∠AED90°,即GDAE,推出CFDG,推出ABCD,于是得到結(jié)論;

2)設(shè)CD3x,AB8x,得到CDFG3x,于是得到AFCD3x,求得BG8x3x3x2x,求得BC6410,根據(jù)勾股定理得到AB88x,求得x1,在RtACF中,根據(jù)勾股定理即可得到結(jié)論.

解:(1)連結(jié),

,∴的直徑.

,∴.

的直徑,∴

GDAE,

CFDG,

AD是⊙O的直徑,

∴∠ACD90°,

,

,

∴四邊形為平行四邊形.

2)由,可設(shè),

.

,

,

.

.

又∵,

,

,

,

.

中,,

,即的直徑長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)在農(nóng)業(yè)產(chǎn)業(yè)合作化銷售中,其中一農(nóng)產(chǎn)品經(jīng)分析發(fā)現(xiàn)月銷售量y(萬件)與月份x(月)的關(guān)系為:,每件產(chǎn)品的利潤z(元)與月份x(月)的關(guān)系如下表:

x

1

2

3

4

5

6

7

8

9

10

11

12

z

19

18

17

16

15

14

13

12

11

10

9

8

1)請你根據(jù)表格求出每件產(chǎn)品利潤(元)與月份x(月)的關(guān)系式;

2)若月利潤w(萬元)=當月銷售量y(萬件)×當月每件產(chǎn)品的利潤z(元),求月利潤(萬元)與月份x(月)的關(guān)系式;

3)當x為何值時,月利潤w有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.

(1)“從中任意抽取1個球不是紅球就是白球   事件,從中任意抽取1個球是黑球   事件;

(2)從中任意抽取1個球恰好是紅球的概率是   ;

(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】車間有20名工人,某天他們生產(chǎn)的零件個數(shù)統(tǒng)計如下表.

車間20名工人某一天生產(chǎn)的零件個數(shù)統(tǒng)計表

生產(chǎn)零件的個數(shù)(個)

9

10

11

12

13

15

16

19

20

工人人數(shù)(人)

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準備實行“每天定額生產(chǎn),超產(chǎn)有獎”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進行分析,你將如何確定這個“定額”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點(1,0),直線軸于點(20),直線軸于點(3,0),,直線軸于點(n,0)。函數(shù)的圖象與直線分別交于點;函數(shù)的圖象與直線分別交于點。如果的面積記作,四邊形的面積記作,四邊形的面積記作,,四邊形的面積記作,那么_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠BAC120°,ABAC2 DBC邊一點,且BDDC12.以D為一個點作等邊△DEF,且DEDC連接AE,將等邊△DEF繞點D旋轉(zhuǎn)一周,在整個旋轉(zhuǎn)過程中,當AE取得最大值時AF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC5BC8,若△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,BC分別與D,EF對應(yīng),若以點AD,E為頂點的三角形是等腰三角形,則m的值是_____

查看答案和解析>>

同步練習(xí)冊答案