【題目】如圖,在△ABC中,∠BAC=90°,點E在BC邊上,且CA=CE,過A,C,E三點的⊙O交AB于另一點F,作直徑AD,連結(jié)DE并延長交AB于點G,連結(jié)CD,CF.
(1)求證:四邊形DCFG是平行四邊形;(2)當BE=4,CD=AB時,求⊙O的直徑長.
【答案】(1)見解析;(2)的直徑長為.
【解析】
(1)連接AE,由∠BAC=90°,得到CF是⊙O的直徑,根據(jù)圓周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到結(jié)論;
(2)設(shè)CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x3x3x=2x,求得BC=6+4=10,根據(jù)勾股定理得到AB=8=8x,求得x=1,在Rt△ACF中,根據(jù)勾股定理即可得到結(jié)論.
解:(1)連結(jié),
∵,∴為的直徑.
∵,∴.
∵為的直徑,∴,
即GD⊥AE,
∴CF∥DG,
∵AD是⊙O的直徑,
∴∠ACD=90°,
∴,
∴,
∴四邊形為平行四邊形.
(2)由,可設(shè),
∴.
∵,
∴,
∴.
∵,
∴.
又∵,
∴,
∴,
∴,
∴.
在中,,
∴,即的直徑長為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)在農(nóng)業(yè)產(chǎn)業(yè)合作化銷售中,其中一農(nóng)產(chǎn)品經(jīng)分析發(fā)現(xiàn)月銷售量y(萬件)與月份x(月)的關(guān)系為:,每件產(chǎn)品的利潤z(元)與月份x(月)的關(guān)系如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
z | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
(1)請你根據(jù)表格求出每件產(chǎn)品利潤(元)與月份x(月)的關(guān)系式;
(2)若月利潤w(萬元)=當月銷售量y(萬件)×當月每件產(chǎn)品的利潤z(元),求月利潤(萬元)與月份x(月)的關(guān)系式;
(3)當x為何值時,月利潤w有最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元[
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.
(1)“從中任意抽取1個球不是紅球就是白球”是 事件,“從中任意抽取1個球是黑球”是 事件;
(2)從中任意抽取1個球恰好是紅球的概率是 ;
(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車間有20名工人,某天他們生產(chǎn)的零件個數(shù)統(tǒng)計如下表.
車間20名工人某一天生產(chǎn)的零件個數(shù)統(tǒng)計表
生產(chǎn)零件的個數(shù)(個) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準備實行“每天定額生產(chǎn),超產(chǎn)有獎”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進行分析,你將如何確定這個“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線軸于點(1,0),直線軸于點(2,0),直線軸于點(3,0),…,直線軸于點(n,0)。函數(shù)的圖象與直線分別交于點;函數(shù)的圖象與直線分別交于點。如果的面積記作,四邊形的面積記作,四邊形的面積記作,…,四邊形的面積記作,那么_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=120°,AB=AC=2 .D為BC邊一點,且BD:DC=1:2.以D為一個點作等邊△DEF,且DE=DC連接AE,將等邊△DEF繞點D旋轉(zhuǎn)一周,在整個旋轉(zhuǎn)過程中,當AE取得最大值時AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F對應(yīng),若以點A,D,E為頂點的三角形是等腰三角形,則m的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com