【題目】我市某鄉(xiāng)鎮(zhèn)在農業(yè)產業(yè)合作化銷售中,其中一農產品經分析發(fā)現(xiàn)月銷售量y(萬件)與月份x(月)的關系為:,每件產品的利潤z(元)與月份x(月)的關系如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
z | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
(1)請你根據(jù)表格求出每件產品利潤(元)與月份x(月)的關系式;
(2)若月利潤w(萬元)=當月銷售量y(萬件)×當月每件產品的利潤z(元),求月利潤(萬元)與月份x(月)的關系式;
(3)當x為何值時,月利潤w有最大值,最大值為多少?
【答案】(1) z=﹣x+20; (2) (x均為整數(shù))(3)當x=8時,w取最大值,最大值為144萬元
【解析】
本題是通過構建函數(shù)模型解答銷售利潤的問題.依據(jù)題意易得出每件產品利潤(元)與月份x(月)的關系式,然后根據(jù)銷售利潤=銷售量×(售價﹣進價),列出平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式,再依據(jù)函數(shù)的增減性求得最大利潤.
(1)依題意,設每件產品利潤(元)與月份x(月)的關系式為:z=kx+b,由表中的數(shù)據(jù)有
,解得 ,
故每件產品利潤(元)與月份x(月)的關系式為:z=﹣x+20
(2)依題意,
當1≤x≤8時,w=zy=(20﹣x)(x+4)=﹣x2+16x+80
當9≤x≤12時,w=zy=(20﹣x)(﹣x+20)=x2﹣40x+400
∴(x均為整數(shù))
(3)由(2)得(x均為整數(shù))
當1≤x≤8時,對稱軸為x= =8
∴當x=8時,w取最大值,最大值為144
當9≤x≤12時,對稱軸為x==20
∴當x=9時,w取最大值,最大值為121
∴當x=8時,w取最大值,最大值為144萬元
科目:初中數(shù)學 來源: 題型:
【題目】某校在一次社會實踐活動中,組織學生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實踐活動的效果,學校隨機抽取了部分學生,對“最喜歡的景點”進行了問卷調查,并根據(jù)統(tǒng)計結果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學生人數(shù)與最喜歡博物館的學生人數(shù)之比為2:1,請結合統(tǒng)計圖解答下列問題:
(1)本次活動抽查了 名學生;
(2)請補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,最喜歡植物園的學生人數(shù)所對應扇形的圓心角是 度;
(4)該校此次參加社會實踐活動的學生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調查的市民人數(shù)為________人,m=________,n=________;
(2)補全條形統(tǒng)計圖;
(3)若該市約有市民100000人,請你根據(jù)抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調查統(tǒng)計,現(xiàn)從該校隨機抽取n名學生作為樣本,采用問卷調查的方式收集數(shù)據(jù)參與問卷調查的每名學生只能選擇其中一項,并根據(jù)調查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:
補全條形統(tǒng)計圖;
若該校共有學生2400名,試估計該校喜愛看電視的學生人數(shù).
若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)某學校“智慧方園”數(shù)學社團遇到這樣一個題目:
如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.
經過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).
請回答:∠ADB= °,AB= .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A,B兩點,且與反比例函數(shù)y=(a≠0)的圖象在第二象限交于點C,CD⊥x軸垂足為D點,若OB=2OA=3OD=6.
(1)求反比例函數(shù)y=和一次函數(shù)y=kx+b的表達式;
(2)直接寫出關于x的不等式>kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類別,每位同學僅選一項.根據(jù)調査結果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | a | 0.5 |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | b | 1 |
根據(jù)圖表提供的信息,回答下列問題:
(1)直接寫出:a= .b= m= ;
(2)在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從中任意選出2名同學參加學校的戲劇社團,請求選取的2人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2011廣西崇左,18,3分)已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的實數(shù));④(a+c)2<b2;⑤a>1.其中正確的項是( )
A. ①⑤ B. ①②⑤ C. ②⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點E在BC邊上,且CA=CE,過A,C,E三點的⊙O交AB于另一點F,作直徑AD,連結DE并延長交AB于點G,連結CD,CF.
(1)求證:四邊形DCFG是平行四邊形;(2)當BE=4,CD=AB時,求⊙O的直徑長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com