【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點(diǎn)O,點(diǎn)D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點(diǎn)P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號(hào)是 .
【答案】①②③④.
【解析】
試題分析:①正確.如圖,∵∠ACB=90°,AC=BC,CO⊥AB
∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,∵OA=OC,∠A=∠ECO,AD=CE,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正確.
②正確.∵∠DCE+∠DOE=180°,∴D、C、E、O四點(diǎn)共圓,∴∠CDE=∠COE,故②正確.
③正確.∵AC=BC=1,∴S△ABC=×1×1=,S四邊形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正確.
④正確.∵D、C、E、O四點(diǎn)共圓,∴OPPC=DPPE,∴+2DPPE=+2OPPC=2OP(OP+PC)=2OPOC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴,∴OPOC=,∴+2DPPE===,∵CD=BE,CE=AD,∴,∴.
故④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2011廣西崇左,18,3分)已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的實(shí)數(shù));④(a+c)2<b2;⑤a>1.其中正確的項(xiàng)是( )
A. ①⑤ B. ①②⑤ C. ②⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)E在BC邊上,且CA=CE,過(guò)A,C,E三點(diǎn)的⊙O交AB于另一點(diǎn)F,作直徑AD,連結(jié)DE并延長(zhǎng)交AB于點(diǎn)G,連結(jié)CD,CF.
(1)求證:四邊形DCFG是平行四邊形;(2)當(dāng)BE=4,CD=AB時(shí),求⊙O的直徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:
(1)當(dāng)轎車剛到乙地時(shí),此時(shí)貨車距離乙地 千米;
(2)當(dāng)轎車與貨車相遇時(shí),求此時(shí)x的值;
(3)在兩車行駛過(guò)程中,當(dāng)轎車與貨車相距20千米時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,動(dòng)點(diǎn)M從點(diǎn)D出發(fā),按折線D﹣C﹣B﹣A﹣D方向以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),按折線D﹣A﹣B﹣C﹣D方向以1cm/s的速度運(yùn)動(dòng).若動(dòng)點(diǎn)M、N同時(shí)出發(fā),相遇時(shí)停止運(yùn)動(dòng),若點(diǎn)E在線段BC上,且BE=3cm,經(jīng)過(guò)_____秒鐘,點(diǎn)A、E、M、N組成平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ABC=90°,AO是△ABC的角平分線,以O為圓心,OB為半徑作圓交BC于點(diǎn)D,
(1)求證:直線AC是⊙O的切線;
(2)在圖2中,設(shè)AC與⊙O相切于點(diǎn)E,連結(jié)BE,如果AB=4,tan∠CBE=.
①求BE的長(zhǎng);②求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,小張把容積為60升的油箱加滿后自駕出行,行駛一段路程后進(jìn)入服務(wù)區(qū)停車休息,休息后,小張離開(kāi)服務(wù)區(qū)繼續(xù)前行,為能順利到達(dá)目的地,小張需在相距S千米的加油站加油.若小張從出發(fā)點(diǎn)到服務(wù)區(qū)休息點(diǎn)行駛的路程為200千米,且這期間平均油耗為每千米0.12升.
(1)求小張離開(kāi)服務(wù)區(qū)休息點(diǎn)時(shí),油箱內(nèi)還有多少升汽油?
(2)記小張從離開(kāi)服務(wù)區(qū)休息點(diǎn)到進(jìn)入加油站加油期間的平均油耗為每千米a升,請(qǐng)寫(xiě)出S與a的函數(shù)關(guān)系式;若0.08≤a≤0.1,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線y=ax2+bx+c(a≠0)與x軸兩個(gè)交點(diǎn)間的距離為6,稱此拋物線為定弦拋物線.已知某定弦拋物線開(kāi)口向上,對(duì)稱軸為直線x=2,且通過(guò)(1,y1),(3,y2),(﹣1,y3),(﹣3,y4)四點(diǎn),則y1,y2,y3,y4中為正數(shù)的是( 。
A. y1B. y2C. y3D. y4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為打造書(shū)香校園,購(gòu)進(jìn)了甲、乙兩種型號(hào)的新書(shū)柜來(lái)放置新買的圖書(shū),甲型號(hào)書(shū)柜共花了15000元,乙型號(hào)書(shū)柜共花了18000元,乙型號(hào)書(shū)柜比甲型號(hào)書(shū)柜單價(jià)便宜了300元,購(gòu)買乙型號(hào)書(shū)柜的數(shù)量是甲型號(hào)書(shū)柜數(shù)量的2倍.求甲、乙型號(hào)書(shū)柜各購(gòu)進(jìn)多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com