【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接AO并延長(zhǎng),交DC延長(zhǎng)線于點(diǎn)E,連接AC,BE.
(1)求證:四邊形ABEC是平行四邊形;
(2)當(dāng)∠D=50°,∠AOC=100°時(shí),判斷四邊形ABEC的形狀,并說明理由.
【答案】(1)見解析;(2)四邊形ABEC是矩形,理由見解析.
【解析】
(1)由平行四邊形的性質(zhì)可得AB∥CD,可得∠BAO=∠CEO,∠ABO=∠ECO,由“AAS”可證△ABO≌△ECO,可得AO=EO,即可證四邊形ABEC是平行四邊形;
(2)由平行四邊形的性質(zhì)和三角形外角性質(zhì)可證AO=BO,可得AE=BC,即可得四邊形ABEC是矩形.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠BAO=∠CEO,∠ABO=∠ECO,
∵點(diǎn)O是邊BC的中點(diǎn),
∴BO=CO,且∠BAO=∠CEO,∠ABO=∠ECO,
∴△ABO≌△ECO(AAS),
∴AO=EO,且BO=CO,
∴四邊形ABEC是平行四邊形;
(2)四邊形ABEC是矩形,
理由如下:∵四邊形ABCD是平行四邊形,
∴∠ABC=∠D=50°,
∵∠AOC=∠ABC+∠BAO=100°,
∴∠ABC=∠BAO=50°,
∴AO=BO,
∴AE=BC,
∴ABEC是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠1=∠2,∠3=∠4,則AD∥BE.完成下列推理過程:
證明:∵AB∥CD(已知)
∴∠4= ( )
∵∠3=∠4(已知)
∴∠3= ( )
∵∠1=∠2(已知)
∴∠CAE+∠1=∠CAE+∠2
即∠ =∠
∴∠3=
∴AD∥BE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)為4,點(diǎn)是△的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段于兩點(diǎn),連接,給出下列四個(gè)結(jié)論:①;②;③四邊形的面積始終等于;④△周長(zhǎng)的最小值為6,上述結(jié)論中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=,D是BC的中點(diǎn),將△OCD沿直線OD折疊后得到△OGD,延長(zhǎng)OG交AB于點(diǎn)E,連接DE,則點(diǎn)G的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,點(diǎn)在線段的延長(zhǎng)線上,連接交于點(diǎn),,點(diǎn)是的中點(diǎn).若,,則的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為8,點(diǎn)對(duì)應(yīng)的數(shù)為,為原點(diǎn).
(1)兩點(diǎn)的距離是_____;
(2)若點(diǎn)以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),則2秒時(shí),兩點(diǎn)的距離是_____;
(3)若點(diǎn)都以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),而點(diǎn)不動(dòng),秒時(shí),中有一點(diǎn)是三點(diǎn)所在線段的中點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是三角形 內(nèi)一點(diǎn),射線PD//AC ,射線PB//AB .
(1)當(dāng)點(diǎn)D,E分別在AB,BC 上時(shí),
①補(bǔ)全圖1:
②猜想 與 的數(shù)量關(guān)系,并證明;,
(2)當(dāng)點(diǎn)都在線段上時(shí),請(qǐng)先畫出圖形,想一想你在(1)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com