【題目】如圖,ABC的高為ADA'B'C'的高為A'D',且A'D'AD.現(xiàn)有①②③三個條件:

①∠B=∠B',∠C=∠C';

②∠B=∠B'ABA'B';

BCB'C',ABA'B'

分別添加以上三個條件中的一個,如果能判定ABC≌△A'B'C',寫出序號,并畫圖證明;如果不能判定ABC≌△A'B'C',寫出序號,并畫出相應(yīng)的反例圖形.

【答案】添加條件①和③都能判定,畫圖證明過程見解析;添加條件②不能判定,相應(yīng)的反例圖形見解析.

【解析】

①先由定理證出兩個直角三角形全等,得出,再由定理可證明;②缺少條件,不能證明;③先由定理證出兩個直角三角形全等,得出,再由定理可證明.

(1)添加條件①和③都能判定,畫圖證明過程如下:

如圖,在中,

中,

中,

中,

;

2)添加條件②不能判定,相應(yīng)的反例圖形如下:

根據(jù)條件②只能判定,并不能判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,、的切線,切點分別為,過點,于點,交于點

求證:的切線;

,,求陰影部分的面積.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖與探究:

如圖,ABC中,AB=AC.

(1)作圖:①畫線段BC的垂直平分線l,設(shè)lBC邊交于點H;

②在射線HA上畫點D,使AD=AB,連接BD. (不寫作法,保留作圖痕跡)

(2)探究:∠D與∠C有怎樣的數(shù)量關(guān)系? 并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,∠A30°,DE垂直平分斜邊AC,交ABD,E是垂足,連接BE,CD,若BD1,則△BCE的面積為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定理:直角三角形斜邊上的中線等于斜邊的一半.

1)寫出這個定理的逆命題;

2)判斷逆命題的真假并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若ABC內(nèi)一點P,滿足∠PAB=∠PBC=∠PCAα,則稱點PABC的布洛卡點.通過研究一些特殊三角形中的布洛卡點,得到如下兩個結(jié)論:

①若∠BAC90°,則必有∠APC90°;②若ABAC,則必有∠APB=∠BPC

對于這兩個結(jié)論,下列說法正確的是(  )

A.①對,②錯B.①錯,②對C.①,②均錯D.①,②均對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x-m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(CD的左側(cè)),點C的橫坐標(biāo)最小值為-3,則點D的橫坐標(biāo)最大值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A0,4)是直角坐標(biāo)系y軸上一點,動點P從原點O出發(fā),沿x軸正半軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內(nèi)作等腰RtAPB.設(shè)P點的運動時間為t秒.

1)若ABx軸,如圖1,求t的值;

2)設(shè)點A關(guān)于x軸的對稱點為A,連接AB,在點P運動的過程中,∠OAB的度數(shù)是否會發(fā)生變化,若不變,請求出∠OAB的度數(shù),若改變,請說明理由.

3)如圖2,當(dāng)t3時,坐標(biāo)平面內(nèi)有一點M(不與A重合)使得以M、P、B為頂點的三角形和ABP全等,請直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有三張卡片(背面完全相同)分別寫有,,把它們背面朝上洗勻后,小軍從中抽取一張,記下這個數(shù)后放回洗勻,小明又從中抽出一張.

兩人抽取的卡片上的數(shù)是的概率是________.

李剛為他們倆設(shè)定了一個游戲規(guī)則:若兩人抽取的卡片上兩數(shù)之積是有理數(shù),則小軍獲勝,否則小明獲勝,你認為這個游戲規(guī)則對誰有利?請用列表法或樹狀圖進行分析說明.

查看答案和解析>>

同步練習(xí)冊答案