精英家教網 > 初中數學 > 題目詳情

【題目】某校為了解“陽光體育”活動的開展情況,從全校1000名學生中,隨機抽取部分學生進行問卷調查(每名學生只能從A、B、C、D中選擇一項自己喜歡的活動項目),并將調查結果繪制成如下兩幅不完整的統計圖

A:踢毽子 B:乒乓球 C:籃球 D:跳繩

根據以上信息,解答下列問題:

(1)被調查的學生共有 人,并補全條形統計圖;

2在扇形統計圖中,求表示區(qū)域D的扇形圓心角的度數;

3)全校學生中喜歡籃球的人數大約是多少人?

【答案】150272°;(3400

【解析】(1)用B的百分比和人數求出總人數,用總人數減去已知的人數,得到A的人數,畫圖即可;

(2)用D的人數除以總人數,求出百分比,乘以360°即可;

(3)用20除以50得到喜歡籃球的百分比,然后乘以總人數即可估算.

(1)15÷30%=50,

50-15-20-10=5

畫圖如下;

(2)×360°=72°;

(3)×1000=400(人).

答:估計全校學生中喜歡籃球的人數有400人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,,,點Bx軸上,且

求點B的坐標;

的面積;

y軸上是否存在P,使以A、BP三點為頂點的三角形的面積為10?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】騰飛中學在教學樓前新建了一座騰飛雕塑(如圖①.為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為,底部B點的俯角為,小華在五樓找到一點D,利用三角板測得A點的俯角為(如圖②.若已知CD10米,請求出雕塑AB的高度.(結果精確到0.1米,參考數據).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AB5AC4,∠B,∠C的平分線相交于點O,OMAB,ONAC分別與BC交于點MN,則△OMN的周長為____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:∠1=∠2,EG平分∠AEC

1)如圖①,∠MAE45°,∠FEG15°,∠NCE75°.求證:ABCD;

2)如圖②,∠MAE140°,∠FEG30°,當∠NCE   °時,ABCD

3)如圖②,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關系時,ABCD;

4)如圖③,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關系時,ABCD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現將△ABC平移,使點A變換為點A',點B'、C'分別是BC的對應點.

1)請畫出平移后的△A'B'C',并求△A'B'C'的面積=    

2)請在AB上找一點P,使得線段CP平分△ABC的面積,在圖上作出線段CP;

3)請在圖中畫出過點C且平行于AB的直線CM

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小亮將筆記本電腦水平放置在桌子上,顯示屏OA與底板OB所在水平線的夾角為120°時,感覺最舒適(如圖1),側面示意圖為圖2;使用時為了散熱,她在底板下面墊入散熱架BCO'后,電腦轉到B O′A′位置(如圖3),側面示意圖為圖4.已知OA=OB=28cm,O′C⊥OB于點C,O′C=14cm.

(參考數據:,

(1)求∠CBO'的度數.

(2)顯示屏的頂部A'比原來升高了多少cm?(結果精確到0.1cm)

(3)如圖4,墊入散熱架后,要使顯示屏O′A′與水平線的夾角仍保持120°,則顯示屏O′A′應繞點O'按順時針方向旋轉多少度?(不寫過程,只寫結果

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】七(1)班同學為了解2018年某小區(qū)家庭月均用水情況,隨機調查了該小區(qū)部分家庭,并將調查數據進行如下整理,請解答以下問題:

1)求,的值.并把頻數直方圖補充完整;

2)求該小區(qū)用水量不超過的家庭占被調在家庭總數的百分比;

3)若該小區(qū)有1000戶家庭,根據調查數據估計,該小區(qū)月均用水是超過的家庭大約有多少戶?

查看答案和解析>>

同步練習冊答案