【題目】下列命題中:①等腰三角形底邊的中點到兩腰的距離相等;②等腰三角形的高、中線、角平分線互相重合;③若與成軸對稱,則一定與全等;④有一個角是60度的三角形是等邊三角形;⑤等腰三角形的對稱軸是頂角的平分線.正確命題的個數(shù)是( )
A.1B.2C.3D.4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題引領(lǐng))
問題1:如圖1,在四邊形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分別是AB,AD上的點.且∠ECF=60°.探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)CG,先證明△CBE≌△CDG,再證明△CEF≌△CGF.他得出的正確結(jié)論是 .
(探究思考)
問題2:如圖2,若將問題1的條件改為:四邊形ABCD中,CB=CD,∠ABC+∠ADC=180°,∠ECF=∠BCD,問題1的結(jié)論是否仍然成立?請說明理由.
(拓展延伸)
問題3:如圖3,在問題2的條件下,若點E在AB的延長線上,點F在DA的延長線上,若BE=2,DF=8,求EF的長(請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC是△ABD的角平分線,BC=DC,∠A=∠E=30°,∠D=50°.
(1)寫出AB=DE的理由;
(2)求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】M為雙曲線y=上的一點,過點M作x軸、y軸的垂線,分別交直線y=﹣x+m于點D,C兩點,若直線y=﹣x+m與y軸交于點A,與x軸相交于點B.
(1)求ADBC的值.
(2)若直線y=﹣x+m平移后與雙曲線y=交于P、Q兩點,且PQ=3,求平移后m的值.
(3)若點M在第一象限的雙曲線上運動,試說明△MPQ的面積是否存在最大值?如果存在,求出最大面積和M的坐標(biāo);如果不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,動點E以每秒1個單位長度的速度從點A出發(fā)沿AC方向運動,點F同時以每秒1個單位長度的速度從點C出發(fā)沿CA方向運動,若AC=12,BD=8,則經(jīng)過________秒后,四邊形BEDF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算.(能用公式計算的請用公式計算)
(1)(2)2(2018π)0+;
(2)(2a2)36a2a4;
(3)
(4)(2a+b5) (2ab5) .
(5)
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形OABC的邊OA在x軸上,點B的坐標(biāo)為(8,4),P是對角線OB上的一個動點,點D(0,1)在y軸上,當(dāng)PC+PD最短時,點P的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:三角形ABC中,∠A=90,AB=AC,D為BC的中點,如圖,E,F分別是AB,AC上的點,且BE=AF,求證:△DEF為等腰直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com