分析 (1)由正方形的性質(zhì)得出AD=AB,證出∠DAF=∠ABE,由AAS證明△ADF≌△BAE,得出AF=BE,DF=AE,即可得出結(jié)論;
(2)設(shè)DF=a,AF=b,EF=DF-AF=a-b>0,由已知條件得出DF+AF=$\frac{4}{3}$,即a+b=$\frac{4}{3}$,由勾股定理得出a2+b2=1,再由完全平方公式得出a-b即可.
解答 (1)證明:∵BE⊥AP,DF⊥AP,
∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,
∵四邊形ABCD為正方形,
∴AD=AB,∠DAB=90°=∠DAF+∠BAE,
∴∠DAF=∠ABE,
在△ADF和△BAE中,
$\left\{\begin{array}{l}{∠DAF=∠ABE}\\{∠DFA=∠AEB}\\{AD=AB}\end{array}\right.$,
∴△ADF≌△BAE(AAS),
∴AF=BE,DF=AE,
∴EF=AE-AF=DF-BE;
(2)解:設(shè)DF=a,AF=b,EF=DF-AF=a-b>0,
∵△ADF的周長為$\frac{7}{3}$,AD=1,
∴DF+AF=$\frac{4}{3}$,
即a+b=$\frac{4}{3}$,由勾股定理得:DF2+AF2=AD2,
即a2+b2=1,
∴(a-b)2=2(a2+b2)-(a+b)2=2-$\frac{16}{9}$=$\frac{2}{9}$,
∴a-b=$\frac{\sqrt{2}}{3}$,
即EF=$\frac{\sqrt{2}}{3}$.
點(diǎn)評 本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),由勾股定理得出a與b的關(guān)系式是解決問題(2)的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y1<y2<y3 | B. | y2<y1<y3 | C. | y3<y2<y1 | D. | y2<y3<y1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com