【題目】2018119日,中歐(廈門-西安-布達(dá)佩斯)班列駛出廈門自貿(mào)區(qū)海滄火車站,經(jīng)西安直達(dá)匈牙利首都布達(dá)佩斯 ,我市與歐洲各國經(jīng)貿(mào)往來日益頻繁,某歐洲客商準(zhǔn)備在廈門采購一批特色商品,經(jīng)調(diào)查,用元采購型商品的件數(shù)是用元采購型商品件數(shù)的倍,一件型商品的進(jìn)價比一件型商品的進(jìn)價多.

1)求一件型商品的進(jìn)價分別為多少元?

2)若該歐洲客商購進(jìn)型商品共件進(jìn)行試銷,其中型商品的件數(shù)不大于型商品的件數(shù),且不小于件,已知型商品的售價為/件,型商品的售價為/件,且全部售出,設(shè)購進(jìn)型商品.

①求該客商銷售這批商品的利潤之間的函數(shù)解析式;

②若歐洲商決定在試銷活動中每售出一件型商品,就從一件型商品的利潤中捐獻(xiàn)慈善資金元,求該客商售完所有商品并捐獻(xiàn)資金后獲得的最大收益.

【答案】1型商品的進(jìn)價元,商品的進(jìn)價為元;

2)①;

②當(dāng)時,時利潤最大,最大利益為:()元;

當(dāng)時,最大利益為:17500元;

當(dāng)時,時利潤最大,最大利益為:()元.

【解析】

1))設(shè)一件型商品的進(jìn)價為元,則型商品的進(jìn)價為元,根據(jù)用元采購型商品的件數(shù)是用元采購型商品件數(shù)的倍,列出方程即可求解;

2)①根據(jù)總利潤=兩種商品的利潤之和,列出式子即可解決問題;

②設(shè)捐獻(xiàn)資金后獲利為元,則,分三種情形討論即可解決問題.

解:(1)設(shè)一件型商品的進(jìn)價為元,則型商品的進(jìn)價為元,

,

解得,

經(jīng)檢驗是原方程的解,且符合題意,

商品的進(jìn)價為元,

答:型商品的進(jìn)價元,商品的進(jìn)價為元;

2)①設(shè)型商品件,則型商品件,則

,解得,

,

,

②設(shè)捐獻(xiàn)資金后獲利為元,

,

當(dāng)時,的增大而增大,

當(dāng)時利潤最大,,

當(dāng)時,,

當(dāng)的增大而減小,

當(dāng)時,利潤最大,.

故答案為:(1型商品的進(jìn)價元,商品的進(jìn)價為元;

2)①;

②當(dāng)時,時利潤最大,最大利益為:()元;

當(dāng)時,最大利益為:17500元;

當(dāng)時,時利潤最大,最大利益為:()元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為,與軸交于點,與軸交于,兩點(點在點的左側(cè))。

1)求拋物線的解析式;

2)連接,,試證明為直角三角形;

3)若點在拋物線上,軸于點,以、、為頂點的三角形與相似,試求出所有滿足條件的點的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A4,0),O為坐標(biāo)原點,P是線段OA上任意一點不含端點O,A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下它們的頂點分別為B、C射線OB與AC相交于點D當(dāng)OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )

A B. C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過點A、B、C

(1)求拋物線的解析式;

(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標(biāo)為t,設(shè)拋物線對稱軸lx軸交于一點E,連接PE,交CDF,求以C、E、F為頂點三角形與△COD相似時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BCOB,點D上一動點,點ECD中點,連接BD分別交OCOE于點F,G

(1)求∠DGE的度數(shù);

(2),求的值;

(3)記△CFB,△DGO的面積分別為S1,S2,若k,求的值.(用含k的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,下列說法正確的有____________.

;

④當(dāng)時,yx的增大而增大;

⑤方程的根是,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yax2+bx3a0)與x軸交于點A(﹣1,0)和點B,且OB3OA,與y軸交于點C,此拋物線頂點為點D

1)求拋物線的表達(dá)式及點D的坐標(biāo);

2)如果點Ey軸上的一點(點E與點C不重合),當(dāng)BEDE時,求點E的坐標(biāo);

3)如果點F是拋物線上的一點.且∠FBD135°,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點DBC的中點作正方形DEFG,使點A、C分別在DGDE上,連接AE,BG

試猜想線段BGAE的數(shù)量關(guān)系是______

將正方形DEFG繞點D逆時針方向旋轉(zhuǎn),

判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以扇形 OAB 的頂點 O 為原點,半徑 OB 所在的直線為 x 軸,建立平面直角坐標(biāo)系,點 B 的坐標(biāo)為(2,0),若拋物線 (n 為常數(shù))與扇形 OAB 的邊界總有兩個公共點則 n 的取值范圍是( )

A.n>-4B.C.D.

查看答案和解析>>

同步練習(xí)冊答案