【題目】我市某中學舉行“中國夢——校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

(1)根據(jù)圖示填寫下表;

(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

【答案】1)見解析;(2)見解析;(3初中代表隊選手成績較為穩(wěn)定

【解析】試題分析:(1)根據(jù)成績表加以計算可補全統(tǒng)計表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答;

2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計意義分析得出即可;

3)分別求出初中、高中部的方差即可.

試題解析(1)填表:初中平均數(shù)為 (75808585100)85(),眾數(shù)為85();高中部中位數(shù)為80()

(2)初中部成績好些.因為兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,所以在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.

(3)s [(7585)2(8085)2(8585)2(8585)2(10085)2]70,s [(7085)2(10085)2(10085)2(7585)2(8085)2]160.

ss,因此,初中代表隊選手成績較為穩(wěn)定.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a≠0,在同一直角坐標系中,函數(shù)y=axy=ax2的圖象有可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一直線上有A、B、C不同三地,甲、乙兩人分別從AB兩地同時同向出發(fā)前往距離B150米的C地,甲、乙兩人距離B地的距離y(米)與行走試卷x(分)之間的關(guān)系圖象如圖所示,若甲的速度一直保持不變,乙出發(fā)2分鐘后加速行走,且乙在加速后的速度是甲速度的4.

1)乙加速之后的速度為 /分;

2)求當乙追上甲時兩人與B地的距離;

3)當甲出發(fā) 分鐘時,兩人相距10米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的兩條弦, 相交于點

)若,且 ,求的長.

)若是⊙的直徑, ,且 ,求⊙的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;按照此規(guī)律,第100個圖中正方形和等邊三角形的個數(shù)之和是(

A. 900 B. 903 C. 906 D. 807

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.

(1)若∠EOC=80°,求∠BOD的度數(shù);

(2)若∠EOC=EOD,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙的平均成績;

(2)分別計算甲、乙六次測試成績的方差;

(3)根據(jù)(1)、(2)計算的結(jié)果,你認為推薦誰參加省比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且mn.(以上長度單位:cm

1)用含m,n的代數(shù)式表示所有裁剪線(圖中虛線部分)的長度之和;

2)觀察圖形,發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為   ;

3)若每塊小矩形的面積為10cm2,四個正方形的面積和為58cm2,試求(m+n2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°AB=3m,BC=12mCD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?

查看答案和解析>>

同步練習冊答案