【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點(diǎn)B的坐標(biāo)為(m,﹣2).
(1)求△AHO的周長(zhǎng);
(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】
(1)解:由OH=3,tan∠AOH= ,得

AH=4.即A(﹣4,3).

由勾股定理,得

AO= =5,

△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12


(2)解:將A點(diǎn)坐標(biāo)代入y= (k≠0),得

k=﹣4×3=﹣12,

反比例函數(shù)的解析式為y= ;

當(dāng)y=﹣2時(shí),﹣2= ,解得x=6,即B(6,﹣2).

將A、B點(diǎn)坐標(biāo)代入y=ax+b,得

解得 ,

一次函數(shù)的解析式為y=﹣ x+1


【解析】(1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛貨車(chē)和一輛小轎車(chē)同時(shí)從甲地出發(fā),貨車(chē)勻速行駛至乙地,小轎車(chē)中途停車(chē)休整2h后提速行駛至乙地.設(shè)行駛時(shí)間為x( h),貨車(chē)的路程為y1( km),小轎車(chē)的路程為y2( km ),圖中的線(xiàn)段OA與折線(xiàn)OBCD分別表示y1,y2x之間的函數(shù)關(guān)系.

(1)甲乙兩地相距_____km,m=_____;

(2)求線(xiàn)段CD所在直線(xiàn)的函數(shù)表達(dá)式;

(3)小轎車(chē)停車(chē)休整后還要提速行駛多少小時(shí),與貨車(chē)之間相距20km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為Q(2,﹣1),且與y軸交于點(diǎn)C(0,3),與x軸交于A(yíng),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線(xiàn)上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線(xiàn)向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PD∥y軸,交AC于點(diǎn)D.

(1)求該拋物線(xiàn)的函數(shù)關(guān)系式;
(2)當(dāng)△ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在題(2)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線(xiàn)上,問(wèn)是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:線(xiàn)段AB=20cm.

(1)如圖1,點(diǎn)P沿線(xiàn)段ABA點(diǎn)向B點(diǎn)以2厘米/秒運(yùn)動(dòng),點(diǎn)P出發(fā)2秒后,點(diǎn)Q沿線(xiàn)段BAB點(diǎn)向A點(diǎn)以3厘米/秒運(yùn)動(dòng),問(wèn)再經(jīng)過(guò)幾秒后P、Q相距5cm?

(2)如圖2:AO=4厘米,PO=2厘米,POB=60°,點(diǎn)P繞著點(diǎn)O60°/秒的速度時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿直線(xiàn)BAB點(diǎn)向A點(diǎn)運(yùn)動(dòng),假若點(diǎn)P、Q兩點(diǎn)能相遇,求點(diǎn)Q運(yùn)動(dòng)的速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)OEAC上一點(diǎn),過(guò)點(diǎn)AAGEB,垂足為GAGBDF,則OE=OF

1請(qǐng)證明0E=OF

2)解答(1)題后,某同學(xué)產(chǎn)生了如下猜測(cè):對(duì)上述命題,若點(diǎn)EAC的延長(zhǎng)線(xiàn)上,AGEBAG EB的延長(zhǎng)線(xiàn)于 G,AG的延長(zhǎng)線(xiàn)交DB的延長(zhǎng)線(xiàn)于點(diǎn)F,其他條件不變,則仍有OE=OF.問(wèn):猜測(cè)所得結(jié)論是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿(mǎn)足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫(xiě)出中點(diǎn)四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,ADABC的角平分線(xiàn),DEABDFAC,垂足分別為E,F,則下列四個(gè)結(jié)論:①AD上任意一點(diǎn)到點(diǎn)C,B的距離相等;②AD上任意一點(diǎn)到AB,AC的距離相等;③BDCD,ADBC;④∠BDECDF.其中正確的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)O,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料: 如圖1,在平面直角坐標(biāo)系xOy中,直線(xiàn)y1=ax+b與雙曲線(xiàn)y2= 交于A(yíng)(1,3)和B(﹣3,﹣1)兩點(diǎn).

觀(guān)察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過(guò)觀(guān)察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)將(1)、(2)、(3)補(bǔ)充完整:
將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1< ;
(1)構(gòu)造函數(shù),畫(huà)出圖象 設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫(huà)出這兩個(gè)函數(shù)的圖象.
雙曲線(xiàn)y4= 如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫(huà)出拋物線(xiàn)y3=x2+4x﹣1;(不用列表)

(2)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo) 觀(guān)察所畫(huà)兩個(gè)函數(shù)的圖象,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿(mǎn)足y3=y4的所有x的值為
(3)借助圖象,寫(xiě)出解集 結(jié)合討論結(jié)果,觀(guān)察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為

查看答案和解析>>

同步練習(xí)冊(cè)答案