【題目】如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走6m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°30°

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度(結果精確到1m).

備用數(shù)據(jù):

【答案】(130°;(29m

【解析】試題分析:(1)延長PQ交直線AB于點E,根據(jù)直角三角形兩銳角互余求得即可;

2)設PE=x米,在直角△APE和直角△BPE中,根據(jù)三角函數(shù)利用x表示出AEBE,根據(jù)AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函數(shù)求得QE的長,則PQ的長度即可求解.

試題解析:延長PQ交直線AB于點E,

1∠BPQ=90°-60°=30°;

2)設PE=x米.

在直角△APE中,∠A=45°,

AE=PE=x米;

∵∠PBE=60°

∴∠BPE=30°

在直角BPE中,BE=PE=x米,

∵AB=AE-BE=6米,

x-x=6,

解得:x=9+3

BE=3+3)米.

在直角BEQ中,QE=BE=3+3=3+)米.

PQ=PE-QE=9+3-3+=6+2≈9(米).

答:電線桿PQ的高度約9米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過A(3,0)、B(4,1)兩點,且與y軸交于點C.

(1)求拋物線的解析式;

(2)如圖1,設拋物線與x軸的另一個交點為D,在拋物線的對稱軸上找一點H,使△CDH的周長最小,求出H點的坐標并求出最小周長值;

(3)如圖2,連接AC,E為線段AC上任意一點(不與A、C重合),經(jīng)過A、E、O三點的圓交直線AB于點F,當△OEF的面積取得最小值時,求面積的最小值及E點坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個倉庫共存有糧食60解決下列問題,3個小題都要寫出必要的解題過程:

1甲倉庫運進糧食14,乙倉庫運出糧食10后,兩個倉庫的糧食數(shù)量相等.甲、乙兩個倉庫原來各有多少糧食?

2如果甲倉庫原有的糧食比乙倉庫的2倍少3,則甲倉庫運出多少糧食給乙倉庫,可使甲、乙兩倉庫糧食數(shù)量相等?

3甲乙兩倉庫同時運進糧食,甲倉庫運進的數(shù)量比本倉庫原存糧食數(shù)量的一半多1,乙倉庫運進的數(shù)量是本倉庫原有糧食數(shù)量加上8所得的和的一半求此時甲、乙兩倉庫共有糧食多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)分別是線段AO,BO的中點,若AC+BD=24厘米,△OAB的周長是18厘米,則EF為(
A.3厘米
B.4厘米
C.5厘米
D.6厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AE=AB,直線DE交BC于點F,則∠BEF=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知, ,

)根據(jù)所給的條件用量角器和三角板畫出圖形.

)求的度數(shù).

(注意:可能存在不同的情形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在①ab是一次單項式;②單項式﹣x2y的系數(shù)是﹣1;③3+x2﹣4x是按x的降冪排列的;④數(shù)4是單項式;這四句話中不正確的是(
A.①③
B.②③
C.②④
D.①②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將代數(shù)式3x2y+5xy2﹣3y3﹣5x3按y的降冪排列是(
A.﹣5x3+3x2y+5xy2﹣3y3
B.﹣3y3+5xy2+3x2y﹣5x3
C.﹣5x3﹣3y3+3x2y+5xy2
D.3x2y+5xy2﹣3y3﹣5x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,設正方體ABCD﹣A1B1C1D1的棱長為1,黑、白兩個甲殼蟲同時從點A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→…,白甲殼蟲爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須是既不平行也不相交(其中n是正整數(shù)).那么當黑、白兩個甲殼蟲各爬行完第2013條棱分別停止在所到的正方體頂點處時,它們之間的距離是(
A.0
B.1
C.
D.

查看答案和解析>>

同步練習冊答案