【題目】某體育用品商場預(yù)測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.

1)該商場兩次共購進這種運動服多少套?

2)如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?

【答案】1)商場兩次共購進這種運動服600套;(2)每套運動服的售價至少是200元.

【解析】

1)設(shè)商場第一次購進套運動服,根據(jù)“第二批所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元”即可列方程求解;

2)設(shè)每套運動服的售價為y元,根據(jù)“這兩批運動服每套的售價相同,且全部售完后總利潤率不低于20% 即可列不等式求解.

1)設(shè)商場第一次購進x套運動服,由題意得

解這個方程,得

經(jīng)檢驗,是所列方程的根

答:商場兩次共購進這種運動服600套;

2)設(shè)每套運動服的售價為y元,由題意得

,

解這個不等式,得

答:每套運動服的售價至少是200元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一方有難八方支援,某市政府籌集抗旱必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型可供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

(1)若全部物資都用甲、乙兩種車來運送,需運費8200元,則分別需甲、乙兩種車各幾輛?

(2)為了節(jié)約運費,該市政府共調(diào)用16輛甲、乙,丙三種車都參與運送物資,試求出有幾種運送方案,哪種方案的運費最省?其費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,為銳角,點為射線上一點,聯(lián)結(jié),以為一邊且在的右側(cè)作正方形

(1)如果,

①當(dāng)點在線段上時(與點不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為 ;

②當(dāng)點在線段的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;

(2)如果,是銳角,點在線段上,當(dāng)滿足什么條件時,(點不重合),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四個螺絲將四條不可彎曲的本條圍成一個木框(形狀不限),不記螺絲大小,其中相鄰兩螺絲之間的距離依次為3,45,7.且相鄰兩本條的夾角均可調(diào)整,若調(diào)整木條的夾角時不破壞此木框,則任意兩個螺絲之間的最大距離是(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△BEF都是等邊三角形,點D在BC邊上,點F在AB邊上,且∠EAD=60°,連接ED、CF.

(1)求證:△ABE≌△ACD;

(2)求證:四邊形EFCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解決后面的問題.

材料:一般地,個相同的因數(shù)相乘:記為,如,此時,3叫做以2為底8的對數(shù),記為(即.

一般地,若),則叫做以為底的對數(shù),記為(即).如,則4叫做以3為底81的對數(shù),記為(即.

問題:(1)計算以下各對數(shù)的值:________,________,________.

(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式?、、之間又滿足怎樣的關(guān)系式?______________________________________________________________________________

(3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?

____________________,,

(4)根據(jù)冪的運算法則:以及對數(shù)的含義證明(3)中結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為準(zhǔn)備參加某市2019年度中小學(xué)生機器人競賽,學(xué)校對甲、乙兩支機器人制作小隊所創(chuàng)作的機器人分別從創(chuàng)意、設(shè)計、編程與制作三方面進行量化,各項量化滿分100分,根據(jù)量化結(jié)果擇優(yōu)推薦.它們?nèi)椓炕梅秩缦卤恚?/span>

量化項目

量化得分

甲隊

乙隊

創(chuàng)意

85

72

設(shè)計

70

66

編程與制作

64

84

1)如果根據(jù)三項量化的平均分擇優(yōu)推薦,哪隊將被推薦參賽?

2)根據(jù)本次中小學(xué)生機器人競賽的主題要求,如果學(xué)校根據(jù)創(chuàng)意、設(shè)計、編程與制作三項量化得分按的比例確定每隊最后得分的平均分擇優(yōu)推薦,哪隊將被推薦參賽?并對另外一隊提出合理化的建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了方便行人,市政府打算修建如圖所示的過街天橋,橋面AD平行于地面BC,立柱AEBC于點E,立柱DFBC于點F,若AB=5米,tanB=,C=30°.

(1)求橋面AD與地面BC之間的距離.

(2)因受地形限制,決定對該天橋進行改建,使CD斜面的坡度變陡,將其30°坡角改為40°,改建后斜面為DG,試計算此次改建節(jié)省路面寬度CG大約應(yīng)是多少?(結(jié)果精確到0.1米,參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為αα90°),若∠1=110°,則∠α=

查看答案和解析>>

同步練習(xí)冊答案