【題目】如圖,△ABC和△BEF都是等邊三角形,點D在BC邊上,點F在AB邊上,且∠EAD=60°,連接ED、CF.
(1)求證:△ABE≌△ACD;
(2)求證:四邊形EFCD是平行四邊形.
【答案】見解析
【解析】試題分析:(1)、根據(jù)等邊三角形的性質(zhì)得出∠EAB=∠CAD,∠EBA=∠ACB,從而得出三角形全等;(2)、根據(jù)三角形全等得出BE=CD,根據(jù)等邊三角形的性質(zhì)得出BE=EF,∠EFB=∠ABC,最后根據(jù)一組對邊平行且相等得出平行四邊形.
試題解析:(1)、∵△ABC和△BEF都是等邊三角形,
∴AB=AC,∠EBF=∠ACB=∠BAC=60°, ∵∠EAD=60°, ∴∠EAD=∠BAC,
∴∠EAB=∠CAD, 在△ABE和△ACD中,∠EBA=∠ACB,AB=AC,∠EAB=∠DAC,
∴△ABE≌△ACD.
(2)、由(1)得△ABE≌△ACD, ∴BE=CD, ∵△BEF、△ABC是等邊三角形,
∴BE=EF, ∴∠EFB=∠ABC=60°, ∴EF∥CD, ∴BE=EF=CD,
∴EF=CD,且EF∥CD, ∴四邊形EFCD是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題需鋪設(shè)一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程 ,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( )
A.每天比原計劃多鋪設(shè)10米,結(jié)果延期15天才完成
B.每天比原計劃少鋪設(shè)10米,結(jié)果延期15天才完成
C.每天比原計劃多鋪設(shè)10米,結(jié)果提前15天才完成
D.每天比原計劃少鋪設(shè)10米,結(jié)果提前15天才完成
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù) 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2),
(1)求這兩個函數(shù)的關(guān)系式;
(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40天
(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時 天
(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=22,動點P從A點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時間為t(t>0)秒.
(1)數(shù)軸上點B表示的數(shù) ;點P表示的數(shù) (用含t的代數(shù)式表示)
(2)若M為AP的中點,N為BP的中點,在點P運(yùn)動的過程中,線段MN的長度是 .
(3)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,若點P、Q同時出發(fā),問多少秒時P、Q之間的距離恰好等于2?
(4)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,若點P、Q同時出發(fā),問點P運(yùn)動多少秒時追上點Q?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組計劃做一批“中國結(jié)”,如果每人做5個,那么比計劃多了9個;如果每人做4個,那么比計劃少15個.該小組共有多少人?計劃做多少個“中國結(jié)”?
根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:
小明:5x□( 。=4x□( 。 小紅: .
(1)根據(jù)小明、小紅所列的方程,其中“□”中是運(yùn)算符號,“( )”中是數(shù)字,請你分別指出未知數(shù)x、y表示的意義.
小明所列的方程中x表示 ,
小紅所列的方程中y表示 ;
(2)請選擇小明、小紅中任意一種方法,完整的解答該題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[k-1,k2-1]的一次函數(shù)為正比例函數(shù),求k的值;
(2)在平面直角坐標(biāo)系中,有兩點A(-m,0),B(0,-2m),且△OAB的面積為4(O為原點),若一次函數(shù)的圖象過A,B兩點,求該一次函數(shù)的特征數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com