【題目】二次函數(shù)y=x2的圖象如圖,點A0位于坐標原點,點A1,A2,A3…An在y軸的正半軸上,點B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點C1,C2,C3…n在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnn都是正方形,則正方形An﹣1BnAnn的周長為_____.
【答案】4n
【解析】
根據(jù)四邊形A0B1A1C1是正方形,可得知△A0B1A1是等腰直角三角形,結合拋物線的解析式求出△A0B1A1的直角邊長,同理求出直角△A1B2A2的直角邊長……,找到直角三角形△An﹣1BnAn的直角邊長的規(guī)律即可求出周長.
解:∵四邊形A0B1A1C1是正方形,∠A0B1A1=90°,
∴△A0B1A1是等腰直角三角形.
設△A0B1A1的直角邊長為m1,則B1(m,m);
代入拋物線的解析式中得:(m)2=m,
解得m1=0(舍去),m1=;
故△A0B1A1的直角邊長為,
同理可求得等腰直角△A1B2A2的直角邊長為2,
…
依此類推,等腰直角△An﹣1BnAn的直角邊長為n,
故正方形An﹣1BnAnn的周長為4n.
故答案是:4n.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,以點C為坐標原點,點,,將繞點A順時針旋轉90°.
(1)在圖中畫出旋轉后的,并寫出點、的坐標;
(2)已知點,在x軸上求作一點P(注:不要求寫出P點的坐標),使得PD的值最小,并求出的最小值;
(3)寫出在旋轉過程中,線段AB掃過的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經過A(-1,0),B(5,0),C(0,-)三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若OF⊥BD于點F,且OF=2,BD=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小、質地都相同的乒乓球,球面上分別標有數(shù)字1,2,3,4,小明先從布袋中隨機摸出一個乒乓球,不放回去,再從剩下的3個球中隨機摸出第二個乒乓球.
(1)求小明第一次摸出的乒乓球所標數(shù)字是偶數(shù)的概率;
(2)請用樹狀圖或列表的方法求兩次摸出的乒乓球球面上數(shù)字的積為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0),若b2=ac,則稱該拋物線為黃金拋物線.例如:y=x2﹣x+1是黃金拋物線
(1)請再寫出一個與上例不同的黃金拋物線的解析式;
(2)將黃金拋物線y=x2﹣x+1沿對稱軸向下平移3個單位
①直接寫出平移后的新拋物線的解析式;
②新拋物線如圖所示,與x軸交于A、B(A在B的左側),與y軸交于C,點P是直線BC下方的拋物線上一動點,連結PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
③當直線BC下方的拋物線上動點P運動到什么位置時,四邊形 OBPC的面積最大并求出此時P點的坐標和四邊形OBPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。
(1)當直線l與這個新圖象有且只有一個公共點時,d= ;
(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;
(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;
(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com