【題目】甲口袋中有2個白球、1個紅球,乙口袋中有1個白球、1個紅球,這些球除顏色外無其他差別.分別從每個口袋中隨機摸出1個球.
(1)求摸出的2個球都是白球的概率.
(2)請比較①摸出的2個球顏色相同②摸出的2個球中至少有1個白球,這兩種情況哪個概率大,請說明理由
【答案】(1)摸出的2個球都是白球的概率為;(2)概率最大的是摸岀的2個球中至少有1個白球.理由見解析.
【解析】
(1)先畫樹狀圖展示所以6種等可能的結果,其中摸出的2個球都是白球的有2種結果,然后根據(jù)概率定義求解.
(2)根據(jù)樹狀圖可知:共有6種等可能的結果,其中摸出的2個球顏色相同的有3種結果,摸出的2個球中至少有1個白球的有5種結果,根據(jù)概率公式分別計算出各自的概率,再比較大小即可.
(1)畫樹狀圖如下:
由樹狀圖知,共有6種等可能結果,其中摸出的2個球都是白球的有2種結果,
所以摸出的2個球都是白球的概率為;
(2)∵摸出的2個球顏色相同概率為、
摸出的2個球中至少有1個白球的概率為,
∴概率最大的是摸岀的2個球中至少有1個白球.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣4x2﹣8mx﹣m2+2m的頂點p.
(1)點p的坐標為 (含m的式子表示)
(2)當﹣1≤x≤1時,y的最大值為5,則m的值為多少;
(3)若拋物線與x軸(不包括x軸上的點)所圍成的封閉區(qū)域只含有1個整數(shù)點,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(-3,2),B(0,-2)其對稱軸為直線x= ,C(0, )為y軸上一點,直線AC與拋物線交于另一點D,
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點F使△ADF是直角三角形,如果存在,求出點F的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,AO=10,則⊙O的半徑長等于( )
A.5 B.6 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用26m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設BC=x m.
(1)若矩形花園ABCD的面積為165m2,求 x的值;
(2)若在P處有一棵樹,樹中心P與墻CD,AD的距離分別是13m和6m,要將這棵樹圍在花園內(考慮到樹以后的生長,籬笆圍矩形ABCD時,需將以P為圓心,1為半徑的圓形區(qū)域圍在內),求矩形花園ABCD面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小蕓設計的“過圓外一點作已知圓的切線”的尺規(guī)作圖過程.
已知:⊙O及⊙O外一點P.
求作:⊙O的一條切線,使這條切線經(jīng)過點P.
作法:①連接OP,作OP的垂直平分線l,交OP于點A;
②以A為圓心,AO為半徑作圓,交⊙O于點M;
③作直線PM,則直線PM即為⊙O的切線.
根據(jù)小蕓設計的尺規(guī)作圖過程,
(1)用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標分別為-1,3.與y軸負半軸交于點C,在下面五個結論中:①2a-b=0;②a+b+c>0;③c=-3a;④只有當a= 時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a值可以有三個.其中正確的結論是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司快遞員甲勻速騎車前往某小區(qū)送物件,出發(fā)幾分鐘后,快遞員乙發(fā)現(xiàn)甲的手機落在公司,無法聯(lián)系,于是乙勻速騎車去追趕甲.乙剛出發(fā)2分鐘時,甲也發(fā)現(xiàn)自己手機落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機給甲后立即原路原速返回公司,甲繼續(xù)原路原速趕往某小區(qū)送物件,甲乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關系如圖所示(乙給甲手機的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).
(1)請直接寫出點B、C的坐標:B( , )、C( , );并求經(jīng)過A、B、C三點的拋物
線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段
AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C. 此時,EF所在直線與(1)中的拋物線交于第一象限的點M.
①設AE=x,當x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形,若存在,請求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com