【題目】如圖,四邊形ABCD中,ABBC2CD,ABCD,∠C90°,EBC的中點,AEBD相交于點F,連接DE

1)求證:△ABE≌△BCD;(2)若CD1,試求△AED的面積.

【答案】1)見解析;(21.5.

【解析】

1)先根據(jù)已知條件和中點定義證出:BE=CD,然后根據(jù)平行線的性質(zhì)證出:∠ABE=∠C,最后利用SAS即可證出:△ABE≌△BCD;

2)根據(jù)SAED=S梯形ABCDSABESDCE計算即可.

證明:(1)∵ABBC2CD,EBC的中點,

BE=CE=BC,CD=BC,

BE=CD

AB∥CD,∠C90°

∴∠ABE=180°-∠C90°,

∴∠ABE=∠C

在△ABE和△BCD

∴△ABE≌△BCD;

解:(2)∵ABBC2CDCD1,

AB=BC=2BE=CE=1

SAED=S梯形ABCDSABESDCE

=BC·(ABCD)-BE·ABCE·DC

=×2×(21)-×1×2×1×1

=1.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)如圖,已知拋物線yx2bxc經(jīng)過A(-1,0),B(3,0)兩點.

(1)求拋物線的解析式和頂點坐標(biāo);

(2)當(dāng)0<x<3時,求y的取值范圍;

(3)點P為拋物線上一點,若SPAB=10,求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線開口向上且經(jīng)過點,雙曲線經(jīng)過點,給出下列結(jié)論:;,c是關(guān)于x的一元二次方程的兩個實數(shù)根;其中正確結(jié)論是______填寫序號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=ax2+cx軸交于點A(m,0),B(n,0),與y軸交于點C(0,c),則稱ABC拋物三角形.特別地,當(dāng)mnc<0時,稱ABC正拋物三角形;當(dāng)mnc>0時,稱ABC倒拋物三角形.若ABC倒拋物三角形時,a、c應(yīng)分別滿足條件_____、_____;若ABC正拋物三角形,此時ABC及其關(guān)于x軸的軸對稱圖形恰好構(gòu)成了一個含60°角的菱形,則a、c應(yīng)滿足的關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列網(wǎng)格中,每個小正方形的邊長都是1,圖中小魚的各個頂點都在格點上.

(1)把小魚向右平移5個單位長度,并畫出平移后的圖形;

(2)寫出A、B、C三點平移后的對應(yīng)點A′、B′、C′的坐標(biāo);

(3)求出圖中小魚的面積,平移后圖中小魚的面積發(fā)生變化嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC∠C=90°,AC=12,BC=6,一條線段PQ=AB,P、Q兩點分別在AC和過點A且垂直于AC的射線AX上運動,要使△ABC△QPA全等,則AP= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,分別是線段,上的點,連接,使四邊形為正方形,若點上的動點,連接,將矩形沿折疊使得點落在正方形的對角線所在的直線上,對應(yīng)點為,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBD相交于點O,∠A=∠D,要使得△AOB≌△DOC,還需補充一個條件,下面補充的條件不一定正確的是(  )

A.OAODB.ABDCC.OBOCD.ABO=∠DCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,.

1)若滿足.

①直接寫出______,______.

②如圖1,為點上方一點,連接,在軸右側(cè)作等腰,連接并延長交軸于點,當(dāng)點上方運動時,求的面積;

2)如圖2,若,點在邊上,且,上一點,且,連接,過點的垂線交于點,交于點.連接,當(dāng),求點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案