【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點(diǎn)P、M.對(duì)于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。
A. ①②B. ①②③C. ①②③④D. ①③④
【答案】D
【解析】
①求出∠CAM=∠DEM=90°,根據(jù)相似三角形的判定推出即可;
②求出△BAE∽△CAD,得出比例式,把AC=AB代入,即可求出答案;
③通過等積式倒推可知,證明△PME∽△AMD即可;
④2CB2轉(zhuǎn)化為AC2,證明△ACP∽△MCA,問題可證.
∵在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,∠ABC=∠AED=90°,
∴∠BAC=45°,∠EAD=45°,
∴∠CAE=180°-45°-45°=90°,
即∠CAM=∠DEM=90°,
∵∠CMA=∠DME,
∴△CAM∽△DEM,故①正確;
由已知:AC=AB,AD=AE,
∴,
∵∠BAC=∠EAD
∴∠BAE=∠CAD
∴△BAE∽△CAD,
∴,即,即CD=BE,故②錯(cuò)誤;
∵△BAE∽△CAD
∴∠BEA=∠CDA
∵∠PME=∠AMD
∴△PME∽△AMD
∴,
∴MPMD=MAME,故③正確;
由②MPMD=MAME
∠PMA=∠DME
∴△PMA∽△EMD
∴∠APD=∠AED=90°
∵∠CAE=180°-∠BAC-∠EAD=90°
∴△CAP∽△CMA
∴AC2=CPCM
∵AC=AB,
∴2CB2=CPCM,故④正確;
即正確的為:①③④,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BC=3,D為AC延長(zhǎng)線上一點(diǎn),AC=3CD,過點(diǎn)D作DH∥AB,交BC的延長(zhǎng)線于點(diǎn)H.
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知斜坡長(zhǎng)米,坡角(即)為,,現(xiàn)計(jì)劃在斜坡中點(diǎn)處挖去部分坡體(用表示)修建一個(gè)平行于水平線的平臺(tái)和一條新的斜坡(結(jié)果精確到,參考數(shù)據(jù)).
(1)若修建的斜坡的坡角(即)不大于,則平臺(tái)的長(zhǎng)最多為______米?(直接寫出結(jié)果)
(2)一座建筑物距離坡角點(diǎn)米遠(yuǎn)(即米),小明在點(diǎn)測(cè)得建筑物頂部的仰角(即)為,點(diǎn)在同一平面內(nèi),點(diǎn)在同一條直線上,且,問建筑物高為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地在進(jìn)入防汛期間,準(zhǔn)備對(duì)4800米長(zhǎng)的河堤進(jìn)行加固,在加固工程中,該地駐軍出色地完成了任務(wù),它們?cè)诩庸?/span>600米后,采用了新的加固模式,每天加固的長(zhǎng)度是原來的2倍,結(jié)果只用9天就完成了加固任務(wù).
(1)求該地駐軍原來每天加固大壩的米數(shù);
(2)由于汛情嚴(yán)重,該駐軍部隊(duì)又接到了加固一段長(zhǎng)4200米大壩的任務(wù),他們以上述新的加固模式進(jìn)行了2天后,接到命令,必須在4天內(nèi)完成剩余任務(wù),求該駐軍每天至少還要再多加固多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,先將繞著頂點(diǎn)順時(shí)針旋轉(zhuǎn),然后再將旋轉(zhuǎn)后的三角形進(jìn)行放大或縮小得到(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)),聯(lián)結(jié),如果和相似,那么的長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從、兩地同時(shí)出發(fā),相向而行。甲車中途因故停車一段時(shí)間,之后以原速繼續(xù)行駛到達(dá)目的地,此時(shí)乙車同時(shí)到達(dá)目的地。如圖,是甲、乙兩車離各自的出發(fā)地的路程與時(shí)間的函數(shù)圖像.
(1)甲車的速度是多少,的值為多少;
(2)求甲車在整個(gè)過程中,與的函數(shù)關(guān)系式;
(3)直接寫出甲、乙兩車在途中相遇時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售部統(tǒng)計(jì)了每個(gè)銷售員一月份的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
設(shè)銷售員的月銷售額為(單位:萬元,且為整數(shù)). 銷售部規(guī)定;當(dāng)時(shí)為“不稱職”,當(dāng)時(shí)為“基本稱職”,當(dāng)時(shí)為“稱職”,當(dāng)時(shí)為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:
計(jì)算銷售部銷售人員的總?cè)藬?shù)及銷售額為優(yōu)秀的人數(shù),并補(bǔ)全扇形統(tǒng)計(jì)圖;
求銷售額達(dá)到稱職及以上的所有銷售員的月銷售額的中位數(shù)和眾數(shù);
為了調(diào)動(dòng)銷售員的積極性,銷售部決定制定一個(gè)月銷售額獎(jiǎng)標(biāo)準(zhǔn),如果欲使達(dá)到“稱職”和“優(yōu)秀”的銷售員中能有約一半人員獲得獎(jiǎng)勵(lì),月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果取整數(shù))?并簡(jiǎn)述理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com